Title:
|
A lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse (English) |
Author:
|
Zeng, Wenlong |
Author:
|
Liu, Jianzhou |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
663-679 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We propose a lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse, in terms of an $S$-type eigenvalues inclusion set and inequality scaling techniques. In addition, it is proved that the lower bound sequence converges. Several numerical experiments are given to demonstrate that the lower bound sequence is sharper than some existing ones in most cases. (English) |
Keyword:
|
lower bound sequence |
Keyword:
|
Hadamard product |
Keyword:
|
$M$-matrix |
Keyword:
|
doubly stochastic matrix |
Keyword:
|
$S$-type eigenvalue inclusion set |
MSC:
|
15A18 |
MSC:
|
15A42 |
idZBL:
|
Zbl 07584094 |
idMR:
|
MR4467934 |
DOI:
|
10.21136/CMJ.2021.0092-21 |
. |
Date available:
|
2022-08-22T08:16:54Z |
Last updated:
|
2024-10-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150609 |
. |
Reference:
|
[1] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Classics in Applied Mathematics 9. SIAM, Philadelphia (1994). Zbl 0815.15016, MR 1298430, 10.1137/1.9781611971262 |
Reference:
|
[2] Chen, F.-B.: New inequalities for the Hadamard product of an $M$-matrix and its inverse.J. Inequal. Appl. 2015 (2015), Article ID 35, 12 pages. Zbl 1307.15005, MR 3304942, 10.1186/s13660-015-0555-1 |
Reference:
|
[3] Cheng, G., Tan, Q., Wang, Z.: Some inequalities for the minimum eigenvalue of the Hadamard product of an $M$-matrix and its inverse.J. Inequal. Appl. 2013 (2013), Article ID 65, 9 pages. Zbl 1282.15010, MR 3031582, 10.1186/1029-242X-2013-65 |
Reference:
|
[4] Fiedler, M., Johnson, C. R., Markham, T. L., Neumann, M.: A trace inequality for $M$-matrices and the symmetrizability of a real matrix by a positive diagonal matrix.Linear Algebra Appl. 71 (1985), 81-94. Zbl 0597.15016, MR 0813035, 10.1016/0024-3795(85)90237-X |
Reference:
|
[5] Fiedler, M., Markham, T. L.: An inequality for the Hadamard product of an $M$-matrix and inverse $M$-matrix.Linear Algebra Appl. 101 (1988), 1-8. Zbl 0648.15009, MR 0941292, 10.1016/0024-3795(88)90139-5 |
Reference:
|
[6] Fiedler, M., Pták, V.: Diagonally dominant matrices.Czech. Math. J. 17 (1967), 420-433. Zbl 0178.03402, MR 0215869, 10.21136/CMJ.1967.100787 |
Reference:
|
[7] Huang, Z., Wang, L., Xu, Z.: Some new estimations for the Hadamard product of a nonsingular $M$-matrix and its inverse.Math. Inequal. Appl. 20 (2017), 661-682. Zbl 1377.15010, MR 3653913, 10.7153/mia-20-44 |
Reference:
|
[8] Li, H.-B., Huang, T.-Z., Shen, S.-Q., Li, H.: Lower bounds for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse.Linear Algebra Appl. 420 (2007), 235-247. Zbl 1172.15008, MR 2277644, 10.1016/j.laa.2006.07.008 |
Reference:
|
[9] Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices.Pac. J. Math. 21 (1967), 343-348. Zbl 0152.01403, MR 0210731, 10.2140/pjm.1967.21.343 |
Reference:
|
[10] Varga, R. S.: Geršgorin and His Circles.Springer Series in Computational Mathematics 36. Springer, Berlin (2004). Zbl 1057.15023, MR 2093409, 10.1007/978-3-642-17798-9 |
Reference:
|
[11] Zhao, J., Wang, F., Sang, C.: Some inequalities for the minimum eigenvalue of the Hadamard product of an $M$-matrix and an inverse $M$-matrix.J. Inequal. Appl. 2015 (2015), Article ID 92, 9 pages. Zbl 1308.15003, MR 3318918, 10.1186/s13660-015-0611-x |
Reference:
|
[12] Zhou, D., Chen, G., Wu, G., Zhang, X.: Some inequalities for the Hadamard product of an $M$-matrix and an inverse $M$-matrix.J. Inequal. Appl. 2013 (2013), Article ID 16, 10 pages. Zbl 1281.15017, MR 3017347, 10.1186/1029-242X-2013-16 |
. |