Previous |  Up |  Next

Article

Title: A lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse (English)
Author: Zeng, Wenlong
Author: Liu, Jianzhou
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 3
Year: 2022
Pages: 663-679
Summary lang: English
.
Category: math
.
Summary: We propose a lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse, in terms of an $S$-type eigenvalues inclusion set and inequality scaling techniques. In addition, it is proved that the lower bound sequence converges. Several numerical experiments are given to demonstrate that the lower bound sequence is sharper than some existing ones in most cases. (English)
Keyword: lower bound sequence
Keyword: Hadamard product
Keyword: $M$-matrix
Keyword: doubly stochastic matrix
Keyword: $S$-type eigenvalue inclusion set
MSC: 15A18
MSC: 15A42
idZBL: Zbl 07584094
idMR: MR4467934
DOI: 10.21136/CMJ.2021.0092-21
.
Date available: 2022-08-22T08:16:54Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/150609
.
Reference: [1] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Classics in Applied Mathematics 9. SIAM, Philadelphia (1994). Zbl 0815.15016, MR 1298430, 10.1137/1.9781611971262
Reference: [2] Chen, F.-B.: New inequalities for the Hadamard product of an $M$-matrix and its inverse.J. Inequal. Appl. 2015 (2015), Article ID 35, 12 pages. Zbl 1307.15005, MR 3304942, 10.1186/s13660-015-0555-1
Reference: [3] Cheng, G., Tan, Q., Wang, Z.: Some inequalities for the minimum eigenvalue of the Hadamard product of an $M$-matrix and its inverse.J. Inequal. Appl. 2013 (2013), Article ID 65, 9 pages. Zbl 1282.15010, MR 3031582, 10.1186/1029-242X-2013-65
Reference: [4] Fiedler, M., Johnson, C. R., Markham, T. L., Neumann, M.: A trace inequality for $M$-matrices and the symmetrizability of a real matrix by a positive diagonal matrix.Linear Algebra Appl. 71 (1985), 81-94. Zbl 0597.15016, MR 0813035, 10.1016/0024-3795(85)90237-X
Reference: [5] Fiedler, M., Markham, T. L.: An inequality for the Hadamard product of an $M$-matrix and inverse $M$-matrix.Linear Algebra Appl. 101 (1988), 1-8. Zbl 0648.15009, MR 0941292, 10.1016/0024-3795(88)90139-5
Reference: [6] Fiedler, M., Pták, V.: Diagonally dominant matrices.Czech. Math. J. 17 (1967), 420-433. Zbl 0178.03402, MR 0215869, 10.21136/CMJ.1967.100787
Reference: [7] Huang, Z., Wang, L., Xu, Z.: Some new estimations for the Hadamard product of a nonsingular $M$-matrix and its inverse.Math. Inequal. Appl. 20 (2017), 661-682. Zbl 1377.15010, MR 3653913, 10.7153/mia-20-44
Reference: [8] Li, H.-B., Huang, T.-Z., Shen, S.-Q., Li, H.: Lower bounds for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse.Linear Algebra Appl. 420 (2007), 235-247. Zbl 1172.15008, MR 2277644, 10.1016/j.laa.2006.07.008
Reference: [9] Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices.Pac. J. Math. 21 (1967), 343-348. Zbl 0152.01403, MR 0210731, 10.2140/pjm.1967.21.343
Reference: [10] Varga, R. S.: Geršgorin and His Circles.Springer Series in Computational Mathematics 36. Springer, Berlin (2004). Zbl 1057.15023, MR 2093409, 10.1007/978-3-642-17798-9
Reference: [11] Zhao, J., Wang, F., Sang, C.: Some inequalities for the minimum eigenvalue of the Hadamard product of an $M$-matrix and an inverse $M$-matrix.J. Inequal. Appl. 2015 (2015), Article ID 92, 9 pages. Zbl 1308.15003, MR 3318918, 10.1186/s13660-015-0611-x
Reference: [12] Zhou, D., Chen, G., Wu, G., Zhang, X.: Some inequalities for the Hadamard product of an $M$-matrix and an inverse $M$-matrix.J. Inequal. Appl. 2013 (2013), Article ID 16, 10 pages. Zbl 1281.15017, MR 3017347, 10.1186/1029-242X-2013-16
.

Files

Files Size Format View
CzechMathJ_72-2022-3_4.pdf 1.138Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo