Previous |  Up |  Next

Article

Title: On a family of elliptic curves of rank at least 2 (English)
Author: Chakraborty, Kalyan
Author: Sharma, Richa
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 3
Year: 2022
Pages: 681-693
Summary lang: English
.
Category: math
.
Summary: Let $C_{m} \colon y^{2} = x^{3} - m^{2}x +p^{2}q^{2}$ be a family of elliptic curves over $\mathbb {Q}$, where $m$ is a positive integer and $p$, $q$ are distinct odd primes. We study the torsion part and the rank of $C_m(\mathbb {Q})$. More specifically, we prove that the torsion subgroup of $C_{m}(\mathbb {Q})$ is trivial and the $\mathbb {Q}$-rank of this family is at least 2, whenever $m \not \equiv 0 \pmod 3$, $m \not \equiv 0 \pmod 4$ and $m \equiv 2 \pmod {64}$ with neither $p$ nor $q$ dividing $m$. (English)
Keyword: elliptic curve
Keyword: torsion subgroup
Keyword: rank
MSC: 11G05
MSC: 14G05
idZBL: Zbl 07584095
idMR: MR4467935
DOI: 10.21136/CMJ.2022.0106-21
.
Date available: 2022-08-22T08:17:28Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/150610
.
Reference: [1] Antoniewicz, A.: On a family of elliptic curves.Zesz. Nauk. Uniw. Jagiell. 1285, Univ. Iagell. Acta Math. 43 (2005), 21-32. Zbl 1116.11036, MR 2331469
Reference: [2] Brown, E., Myers, B. T.: Elliptic curves from Mordell to Diophantus and back.Am. Math. Mon. 109 (2002), 639-649. Zbl 1083.11037, MR 1917222, 10.2307/3072428
Reference: [3] Cremona, J. E.: Algorithms for Modular Elliptic Curves.Cambridge University Press, New York (1997). Zbl 0872.14041, MR 1628193
Reference: [4] Husemöller, D.: Elliptic Curves.Graduate Texts in Mathematics 111. Springer, New York (2004). Zbl 1040.11043, MR 2024529, 10.1007/b97292
Reference: [5] Juyal, A., Kumar, S. D.: On the family of elliptic curves $y^2= x^3-m^2 x+ p^2$.Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. Zbl 1448.11104, MR 3869527, 10.1007/s12044-018-0433-0
Reference: [6] Mazur, B.: Modular curves and the Eisenstein ideal.Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. Zbl 0394.14008, MR 0488287, 10.1007/BF02684339
Reference: [7] Silverman, J. H., Tate, J. T.: Rational Points on Elliptic Curves.Undergraduate Texts in Mathematics. Springer, Cham (2015). Zbl 1346.11001, MR 3363545, 10.1007/978-3-319-18588-0
Reference: [8] Stein, W., Joyner, D., Kohel, D., Cremona, J., Burçin, E.: SageMath software, version 4.5.3.Available at https://www.sagemath.org/ (2010).
Reference: [9] Tadić, P.: On the family of elliptic curve $Y^2 = X^3 -T^2 X+1$.Glas. Mat., III. Ser. 47 (2012), 81-93. Zbl 1254.11057, MR 2942776, 10.3336/gm.47.1.06
Reference: [10] Tadić, P.: The rank of certain subfamilies of the elliptic curve $Y^2= X^3 - X + T^2$.Ann. Math. Inform. 40 (2012), 145-153. Zbl 1274.11109, MR 3005123
.

Files

Files Size Format View
CzechMathJ_72-2022-3_5.pdf 230.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo