Article
Keywords:
non-integrable distribution; infinitesimal symmetry; solvable Lie group; snake robot
Summary:
In this paper, we study a 5 dimensional configuration space of a 3-link snake robot model moving in a plane. We will derive two vector fields generating a distribution which represents a space of the robot’s allowable movement directions. An arbitrary choice of such generators generates the entire tangent space of the configuration space, i.e. the distribution is bracket-generating, but our choice additionally generates a finite dimensional Lie algebra over real numbers. This allows us to extend our model to a model with local Lie group structure, which may have interesting consequences for our original model.
References:
[2] Cartan, É.:
Les systèmes de pfaff, à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. Éc. Norm. Supér. (4) 27 (1910), 109–192.
DOI 10.24033/asens.618 |
MR 1509120
[3] Hrdina, J., Návrat, A., Vašík, P.:
Control of 3-link robotic snake based on conformal geometric algebra. Adv. Appl. Clifford Algebr. 26 (2016), 1069–1080.
DOI 10.1007/s00006-015-0621-2 |
MR 3541137
[4] Montgomery, R.:
A tour of subriemannian geometries, their geodesics and applications. Amer. Math. Soc., 2002.
MR 1867362 |
Zbl 1044.53022
[5] Olver, P.J.:
Equivalence, Invariants and Symmetry. London Mathematical Society Lecture Note, Cambridge University Press, 1995.
MR 1337276 |
Zbl 0837.58001