Previous |  Up |  Next

Article

Title: On the Caginalp system with dynamic boundary conditions and singular potentials (English)
Author: Cherfils, Laurence
Author: Miranville, Alain
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 2
Year: 2009
Pages: 89-115
Summary lang: English
.
Category: math
.
Summary: This article is devoted to the study of the Caginalp phase field system with dynamic boundary conditions and singular potentials. We first show that, for initial data in $H^2$, the solutions are strictly separated from the singularities of the potential. This turns out to be our main argument in the proof of the existence and uniqueness of solutions. We then prove the existence of global attractors. In the last part of the article, we adapt well-known results concerning the Łojasiewicz inequality in order to prove the convergence of solutions to steady states. (English)
Keyword: Caginalp phase field system
Keyword: singular potential
Keyword: dynamic boundary conditions
Keyword: global existence
Keyword: global attractor
Keyword: Łojasiewicz-Simon inequality
Keyword: convergence to a steady state
MSC: 35B40
MSC: 35B41
MSC: 35K55
MSC: 35Q53
MSC: 80A22
idZBL: Zbl 1212.35012
idMR: MR2491850
DOI: 10.1007/s10492-009-0008-6
.
Date available: 2010-07-20T12:50:47Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140353
.
Reference: [1] Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy.Nonlinear Anal. 67 (2007), 3176-3193. Zbl 1121.35018, MR 2347608, 10.1016/j.na.2006.10.002
Reference: [2] Aizicovici, S., Feireisl, E.: Long-time stabilization of solutions to a phase-field model with memory.J. Evol. Equ. 1 (2001), 69-84. Zbl 0973.35037, MR 1838321, 10.1007/PL00001365
Reference: [3] Aizicovici, S., Feireisl, E., Issard-Roch, F.: Long-time convergence of solutions to a phase-field system.Math. Methods Appl. Sci. 24 (2001), 277-287. Zbl 0984.35026, MR 1818896, 10.1002/mma.215
Reference: [4] Bates, P. W., Zheng, S.: Inertial manifolds and inertial sets for phase-field equations.J. Dyn. Diff. Equations 4 (1992), 375-398. 10.1007/BF01049391
Reference: [5] Brochet, D., Chen, X., Hilhorst, D.: Finite dimensional exponential attractors for the phase-field model.Appl. Anal. 49 (1993), 197-212. MR 1289743, 10.1080/00036819108840173
Reference: [6] Brokate, M., Sprekels, J.: Hysteresis and phase transitions.Springer New York (1996). Zbl 0951.74002, MR 1411908
Reference: [7] Caginalp, G.: An analysis of a phase field model of a free boundary.Arch. Ration. Mech. Anal. 92 (1986), 205-245. Zbl 0608.35080, MR 0816623, 10.1007/BF00254827
Reference: [8] Cherfils, L., Miranville, A.: Some results on the asymptotic behavior of the Caginalp system with singular potentials.Adv. Math. Sci. Appl. 17 (2007), 107-129. Zbl 1145.35042, MR 2337372
Reference: [9] Chill, R., Fašangová, E., Prüss, J.: Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions.Math. Nachr. 279 (2006), 1448-1462. Zbl 1107.35058, MR 2269249, 10.1002/mana.200410431
Reference: [10] Fischer, H. P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition.Phys. Rev. Letters 79 (1997), 893-896. 10.1103/PhysRevLett.79.893
Reference: [11] Fischer, H. P., Maass, P., Dieterich, W.: Diverging time and length scales of spinodal decomposition modes in thin flows.Europhys. Letters 62 (1998), 49-54. 10.1209/epl/i1998-00550-y
Reference: [12] Gal, C. G.: A Cahn-Hilliard model in bounded domains with permeable walls.Math. Methods Appl. Sci. 29 (2006), 2009-2036. Zbl 1113.35031, MR 2268279, 10.1002/mma.757
Reference: [13] Gal, C. G., Grasselli, M.: The non-isothermal Allen-Cahn equation with dynamic boundary conditions.Discrete Contin. Dyn. Syst. 22 (2008), 1009-1040. Zbl 1160.35353, MR 2434980, 10.3934/dcds.2008.22.1009
Reference: [14] Gatti, S., Miranville, A.: Asymptotic behavior of a phase-field system with dynamic boundary conditions.Differential Equations: Inverse and Direct Problems (Proceedings of the workshop "Evolution Equations: Inverse and Direct Problems", Cortona, June 21-25, 2004). A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 A. Favini and A. Lorenzi CRC Press Boca Raton (2006), 149-170. Zbl 1123.35310, MR 2275977
Reference: [15] Giorgi, C., Grasselli, M., Pata, V.: Uniform attractors for a phase-field model with memory and quadratic nonlinearity.Indiana Univ. Math. J. 48 (1999), 1395-1445. Zbl 0940.35037, MR 1757078, 10.1512/iumj.1999.48.1793
Reference: [16] Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials.Math. Nachr. 280 (2007), 1475-1509. Zbl 1133.35017, MR 2354975, 10.1002/mana.200510560
Reference: [17] Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential.Z. Anal. Anwend. 25 (2006), 51-72. Zbl 1128.35021, MR 2216881, 10.4171/ZAA/1277
Reference: [18] Grasselli, M., Petzeltová, H., Schimperna, G.: Convergence to stationary solutions for a parabolic-hyperbolic phase-field system.Commun. Pure Appl. Anal. 5 (2006), 827-838. Zbl 1134.35017, MR 2246010, 10.3934/cpaa.2006.5.827
Reference: [19] Grasselli, M., Petzeltová, H., Schimperna, G.: A nonlocal phase-field system with inertial term.Q. Appl. Math. 65 (2007), 451-46. Zbl 1140.35352, MR 2354882, 10.1090/S0033-569X-07-01070-9
Reference: [20] Jendoubi, M. A.: A simple unified approach to some convergence theorems of L. Simon.J. Funct. Anal. 153 (1998), 187-202. Zbl 0895.35012, MR 1609269, 10.1006/jfan.1997.3174
Reference: [21] Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dieterich, W.: Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions.Comput. Phys. Comm. 133 (2001), 139-157. Zbl 0985.65114, MR 1809807, 10.1016/S0010-4655(00)00159-4
Reference: [22] Łojasiewicz, S.: Ensembles semi-analytiques.IHES Bures-sur-Yvette (1965), French.
Reference: [23] Miranville, A., Rougirel, A.: Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations.Z. Angew. Math. Phys. 57 (2006), 244-268. Zbl 1094.35102, MR 2214071, 10.1007/s00033-005-0017-6
Reference: [24] Miranville, A., Zelik, S.: Robust exponential attractors for singularly perturbed phase-field type equations.Electron. J. Differ. Equ. (2002), 1-28. Zbl 1004.35024, MR 1911930
Reference: [25] Miranville, A., Zelik, S.: Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions.Math. Methods Appl. Sci. 28 (2005), 709-735. Zbl 1068.35020, MR 2125817, 10.1002/mma.590
Reference: [26] Prüss, J., Racke, R., Zheng, S.: Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions.Ann. Mat. Pura Appl. 185 (2006), 627-648. Zbl 1232.35081, MR 2230586, 10.1007/s10231-005-0175-3
Reference: [27] Prüss, J., Wilke, M.: Maximal $L_p$-regularity and long-time behaviour of the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions.Operator Theory: Advances and Applications, Vol. 168 Birkhäuser Basel (2006), 209-236. Zbl 1109.35060, MR 2240062
Reference: [28] Racke, R., Zheng, S.: The Cahn-Hilliard equation with dynamic boundary conditions.Adv. Diff. Equ. 8 (2003), 83-110. Zbl 1035.35050, MR 1946559
Reference: [29] Rybka, P., Hoffmann, K.-H.: Convergence of solutions to Cahn-Hilliard equation.Commun. Partial Differ. Equations 24 (1999), 1055-1077. Zbl 0936.35032, MR 1680877, 10.1080/03605309908821458
Reference: [30] Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to gemetric problems.Ann. Math. 118 (1983), 525-571. MR 0727703, 10.2307/2006981
Reference: [31] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition.Springer New York (1997). MR 1441312
Reference: [32] Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions.J. Differ. Equations 204 (2004), 511-531. Zbl 1068.35018, MR 2085545, 10.1016/j.jde.2004.05.004
Reference: [33] Zhang, Z.: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions.Commun. Pure Appl. Anal. 4 (2005), 683-693. Zbl 1082.35033, MR 2167193, 10.3934/cpaa.2005.4.683
Reference: [34] Zhang, Z.: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions.Commun. Pure Appl. Anal. 4 (2005), 683-693. Zbl 1082.35033, MR 2167193, 10.3934/cpaa.2005.4.683
.

Files

Files Size Format View
AplMat_54-2009-2_1.pdf 347.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo