Previous |  Up |  Next

Article

Title: Rate independent Kurzweil processes (English)
Author: Krejčí, Pavel
Author: Liero, Matthias
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 2
Year: 2009
Pages: 117-145
Summary lang: English
.
Category: math
.
Summary: The Kurzweil integral technique is applied to a class of rate independent processes with convex energy and discontinuous inputs. We prove existence, uniqueness, and continuous data dependence of solutions in $BV$ spaces. It is shown that in the context of elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations when the viscosity coefficient tends to zero. The discontinuities produce an additional positive dissipation term, which is not homogeneous of degree one. (English)
Keyword: Kurzweil integral
Keyword: rate independence
MSC: 49J40
MSC: 49K40
MSC: 74C15
idZBL: Zbl 1212.49007
idMR: MR2491851
DOI: 10.1007/s10492-009-0009-5
.
Date available: 2010-07-20T12:51:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140355
.
Reference: [1] Aumann, G.: Reelle Funktionen.Springer-Verlag Berlin-Göttingen-Heidelberg (1954). Zbl 0056.05202, MR 0061652
Reference: [2] Brokate, M., Krejčí, P., Schnabel, H.: On uniqueness in evolution quasivariational inequalities.J. Convex Anal. 11 (2004), 111-130. Zbl 1061.49006, MR 2159467
Reference: [3] Drábek, P., Krejčí, P., Takáč, P.: Nonlinear Differential Equations. Research Notes in Mathematics, Vol. 404.Chapman & Hall/CRC London (1999). MR 1695376
Reference: [4] Krasnosel'skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis.Nauka Moscow (1983), Russian; English edition Springer 1989. MR 0987431
Reference: [5] Krejčí, P., Kurzweil, J.: A nonexistence result for the Kurzweil integral.Math. Bohem. 127 (2002), 571-580. Zbl 1005.26005, MR 1942642
Reference: [6] Krejčí, P., Laurençot, Ph.: Generalized variational inequalities.J. Convex Anal. 9 (2002), 159-183. Zbl 1001.49014, MR 1917394
Reference: [7] Krejčí, P.: The Kurzweil integral with exclusion of negligible sets.Math. Bohem. 128 (2003), 277-292. Zbl 1051.26006, MR 2012605
Reference: [8] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J. 7 (82) (1957), 418-449. Zbl 0090.30002, MR 0111875
Reference: [9] Mielke, A., Rossi, R.: Existence and uniqueness results for a class of rate-independent hysteresis problems.Math. Models Methods Appl. Sci. 17 (2007), 81-123. Zbl 1121.34052, MR 2290410, 10.1142/S021820250700184X
Reference: [10] Mielke, A., Theil, F.: On rate-independent hysteresis models.NoDEA, Nonlinear Differ. Equ. Appl. 11 (2004), 151-189. Zbl 1061.35182, MR 2210284, 10.1007/s00030-003-1052-7
Reference: [11] Moreau, J.-J.: Evolution problem associated with a moving convex set in Hilbert space.J. Differ. Equations 26 (1977), 347-374. Zbl 0356.34067, MR 0508661, 10.1016/0022-0396(77)90085-7
Reference: [12] Rockafellar, R. T.: Convex Analysis.Princeton University Press Princeton (1970). Zbl 0193.18401, MR 0274683
Reference: [13] Schwabik, Š.: On a modified sum integral of Stieltjes type.Čas. Pěst. Mat. 98 (1973), 274-277. Zbl 0266.26007, MR 0322114
Reference: [14] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis, Vol. 5.World Scientific Publishing Co., Inc. River Edge (1992). MR 1200241
Reference: [15] Tvrdý, M.: Regulated functions and the Perron-Stieltjes integral.Čas. Pěst. Mat. 114 (1989), 187-209. MR 1063765
Reference: [16] Tvrdý, M.: Regulated functions and the Perron-Stieltjes integral.Čas. Pěst. Mat. 114 (1989), 187-209. MR 1063765
.

Files

Files Size Format View
AplMat_54-2009-2_2.pdf 362.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo