Previous |  Up |  Next

Article

Title: Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling (English)
Author: Soenjaya, Agus Leonardi
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 4
Year: 2022
Pages: 461-470
Summary lang: English
.
Category: math
.
Summary: Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in $(u,n)\in L^2\times L^2$ under some conditions on the nonlinearity (the coupling term), by using the $L^2$ conservation law for $u$ and controlling the growth of $n$ via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in Miao, Xu (2007) for some exponents to other dimensions and in lower regularity spaces. (English)
Keyword: low regularity
Keyword: global well-posedness
Keyword: Klein-Gordon-Schrödinger equation
Keyword: higher order coupling
MSC: 35G55
MSC: 35Q40
idZBL: Zbl 07655820
idMR: MR4512167
DOI: 10.21136/MB.2021.0172-20
.
Date available: 2022-11-16T11:15:26Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151092
.
Reference: [1] Bachelot, A.: Problème de Cauchy pour des systèmes hyperboliques semi-linéaires.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 453-478 French. Zbl 0566.35068, MR 0778979, 10.1016/S0294-1449(16)30414-0
Reference: [2] Bekiranov, D., Ogawa, T., Ponce, G.: Interaction equations for short and long dispersive waves.J. Funct. Anal. 158 (1998), 357-388. Zbl 0909.35123, MR 1648479, 10.1006/jfan.1998.3257
Reference: [3] Biler, P.: Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling.SIAM J. Math. Anal. 21 (1990), 1190-1212. Zbl 0725.35020, MR 1062399, 10.1137/0521065
Reference: [4] Cazenave, T.: Semilinear Schrödinger Equations.Courant Lecture Notes in Mathematics 10. AMS, Providence (2003). Zbl 1055.35003, MR 2002047, 10.1090/cln/010
Reference: [5] Colliander, J.: Wellposedness for Zakharov systems with generalized nonlinearity.J. Differ. Equations 148 (1998), 351-363. Zbl 0921.35162, MR 1643187, 10.1006/jdeq.1998.3445
Reference: [6] Colliander, J., Holmer, J., Tzirakis, N.: Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems.Trans. Am. Math. Soc. 360 (2008), 4619-4638. Zbl 1158.35085, MR 2403699, 10.1090/S0002-9947-08-04295-5
Reference: [7] Fukuda, I., Tsutsumi, M.: On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions.Proc. Japan Acad. 51 (1975), 402-405. Zbl 0313.35065, MR 0380160, 10.3792/pja/1195518563
Reference: [8] Fukuda, I., Tsutsumi, M.: On coupled Klein-Gordon-Schrödinger equations. III: Higher order interaction, decay and blow-up.Math. Jap. 24 (1979), 307-321. Zbl 0415.35071, MR 0550215
Reference: [9] Ginibre, J., Tsutsumi, Y., Velo, G.: On the Cauchy problem for the Zakharov system.J. Funct. Anal. 151 (1997), 384-436. Zbl 0894.35108, MR 1491547, 10.1006/jfan.1997.3148
Reference: [10] Miao, C., Xu, G.: Low regularity global well-posedness for the Klein-Gordon-Schrödinger system with the higher-order Yukawa coupling.Differ. Integral Equ. 20 (2007), 643-656. Zbl 1212.35454, MR 2319459
Reference: [11] Pecher, H.: Some new well-posedness results for the Klein-Gordon-Schrödinger system.Differ. Integral Equ. 25 (2012), 117-142. Zbl 1249.35309, MR 2906550
Reference: [12] Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis.CBMS Regional Conference Series in Mathematics 106. AMS, Providence (2006). Zbl 1106.35001, MR 2233925, 10.1090/cbms/106
Reference: [13] Tzirakis, N.: The Cauchy problem for the Klein-Gordon-Schrödinger system in low dimensions below the energy space.Commun. Partial Differ. Equations 30 (2005), 605-641. Zbl 1075.35082, MR 2153510, 10.1081/PDE-200059260
.

Files

Files Size Format View
MathBohem_147-2022-4_2.pdf 230.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo