Previous |  Up |  Next

Article

Title: Extensions of hom-Lie algebras in terms of cohomology (English)
Author: Armakan, Abdoreza R.
Author: Farhangdoost, Mohammed Reza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 317-328
Summary lang: English
.
Category: math
.
Summary: We study (non-abelian) extensions of a given hom-Lie algebra and provide a geometrical interpretation of extensions, in particular, we characterize an extension of a hom-Lie algebra $\frak {g}$ by another hom-Lie algebra $\frak {h}$ and discuss the case where $\frak {h}$ has no center. We also deal with the setting of covariant exterior derivatives, Chevalley derivative, Maurer-Cartan formula, curvature and the Bianchi identity for the possible extensions in differential geometry. Moreover, we find a cohomological obstruction to the existence of extensions of hom-Lie algebras, i.e., we show that in order to have an extendible hom-Lie algebra, there should exist a trivial member of the third cohomology. (English)
Keyword: hom-Lie algebras
Keyword: cohomology of hom-Lie algebras
Keyword: extensions of hom-Lie algebras
MSC: 17B99
MSC: 55U15
idZBL: Zbl 06738521
idMR: MR3661043
DOI: 10.21136/CMJ.2017.0576-15
.
Date available: 2017-06-01T14:25:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146758
.
Reference: [1] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras.J. Lie Theory 21 (2011), 813-836. Zbl 1237.17003, MR 2917693
Reference: [2] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics 13, Springer, New York (1992). Zbl 0765.16001, MR 1245487, 10.1007/978-1-4612-4418-9
Reference: [3] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms.J. Geom. Phys. 76 (2014), 38-60. Zbl 1331.17028, MR 3144357, 10.1016/j.geomphys.2013.10.010
Reference: [4] Casas, J. M., Insua, M. A., Pacheco, N.: On universal central extensions of Hom-Lie algebras.Hacet. J. Math. Stat. 44 (2015), 277-288. Zbl 1344.17003, MR 3381108
Reference: [5] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations.J. Algebra 295 (2006), 314-361. Zbl 1138.17012, MR 2194957, 10.1016/j.jalgebra.2005.07.036
Reference: [6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer, Berlin (corrected electronic version) (1993). Zbl 0782.53013, MR 1202431, 10.1007/978-3-662-02950-3
Reference: [7] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures.J. Gen. Lie Theory Appl. 2 (2008), 51-64. Zbl 1184.17002, MR 2399415, 10.4303/jglta/S070206
Reference: [8] Makhlouf, A., Silvestrov, S.: Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras.Forum Math. 22 (2010), 715-739. Zbl 1201.17012, MR 2661446, 10.1515/FORUM.2010.040
Reference: [9] Sheng, Y.: Representations of hom-Lie algebras.Algebr. Represent. Theory 15 (2012), 1081-1098. Zbl 1294.17001, MR 2994017, 10.1007/s10468-011-9280-8
Reference: [10] Sheng, Y., Chen, D.: Hom-Lie 2-algebras.J. Algebra 376 (2013), 174-195. Zbl 1281.17034, MR 3003723, 10.1016/j.jalgebra.2012.11.032
Reference: [11] Sheng, Y., Xiong, Z.: On Hom-Lie algebras.Linear Multilinear Algebra 63 (2015), 2379-2395. Zbl 06519840, MR 3402544, 10.1080/03081087.2015.1010473
Reference: [12] Yau, D.: Enveloping algebras of Hom-Lie algebras.J. Gen. Lie Theory Appl. 2 (2008), 95-108. Zbl 1214.17001, MR 2399418, 10.4303/jglta/S070209
Reference: [13] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras.J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. Zbl 1179.17001, MR 2539278, 10.1088/1751-8113/42/16/165202
.

Files

Files Size Format View
CzechMathJ_67-2017-2_3.pdf 260.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo