Title:
|
The general rigidity result for bundles of $A$-covelocities and $A$-jets (English) |
Author:
|
Tomáš, Jiří |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
297-316 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $M$ be an $m$-dimensional manifold and $A=\mathbb D^r_k /I=\mathbb R \oplus N_A$ a Weil algebra of height $r$. We prove that any $A$-covelocity $T^A_x f \in T^{A*}_x M$, $x \in M$ is determined by its values over arbitrary $\max \{\mathop {\rm width}A, m \}$ regular and under the first jet projection linearly independent elements of $T^A_xM$. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result $T^{A*}M \simeq T^{r*}M$ without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from $m \ge k$ to all cases of $m$. \endgraf We also introduce the space $J^A(M,N)$ of $A$-jets and prove its rigidity in the sense of its coincidence with the classical jet space $J^r(M,N)$. (English) |
Keyword:
|
$r$-jet |
Keyword:
|
bundle functor |
Keyword:
|
Weil functor |
Keyword:
|
Lie group |
Keyword:
|
jet group |
Keyword:
|
$B$-admissible $A$-velocity |
MSC:
|
53C24 |
MSC:
|
58A20 |
MSC:
|
58A32 |
idZBL:
|
Zbl 06738520 |
idMR:
|
MR3661042 |
DOI:
|
10.21136/CMJ.2017.0566-15 |
. |
Date available:
|
2017-06-01T14:24:56Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146757 |
. |
Reference:
|
[1] Alonso, R. J.: Jet manifolds associated to a Weil bundle.Arch. Math., Brno 36 (2000), 195-209. Zbl 1049.58007, MR 1785036 |
Reference:
|
[2] Alonso-Blanco, R. J., Blázquez-Sanz, D.: The only global contact transformations of order two or more are point transformations.J. Lie Theory 15 (2005), 135-143. Zbl 1073.58006, MR 2115233 |
Reference:
|
[3] Bertram, W.: Differential geometry, Lie groups and symmetric spaces over general base fields and rings.Mem. Am. Math. Soc. 192 (2008), 202 pages. Zbl 1144.58002, MR 2369581, 10.1090/memo/0900 |
Reference:
|
[4] Bushueva, G. N., Shurygin, V. V.: On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds.Lobachevskii J. Math. (electronic only) 18 (2005), 53-105. Zbl 1083.58005, MR 2169080 |
Reference:
|
[5] Eck, D. J.: Product-preserving functors on smooth manifolds.J. Pure Appl. Algebra 42 (1986), 133-140. Zbl 0615.57019, MR 0857563, 10.1016/0022-4049(86)90076-9 |
Reference:
|
[6] Kainz, G., Michor, P. W.: Natural transformations in differential geometry.Czech. Math. J. 37 (1987), 584-607. Zbl 0654.58001, MR 0913992 |
Reference:
|
[7] Kolář, I.: Covariant approach to natural transformations of Weil functors.Commentat. Math. Univ. Carol. 27 (1986), 723-729. Zbl 0615.57019, MR 0874666, 10.1016/0022-4049(86)90076-9 |
Reference:
|
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer, Berlin (1993). Zbl 0782.53013, MR 1202431, 10.1007/978-3-662-02950-3 |
Reference:
|
[9] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors.Differ. Geom. Appl. 11 (1999), 105-115. Zbl 0935.58001, MR 1712139, 10.1016/S0926-2245(99)00022-4 |
Reference:
|
[10] Kureš, M.: Weil algebras associated to functors of third order semiholonomic velocities.Math. J. Okayama Univ. 56 (2014), 117-127. Zbl 1315.58003, MR 3155085 |
Reference:
|
[11] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points.Nagoya Math. J. 109 (1988), 63-89. Zbl 0661.58007, MR 0931952, 10.1017/s0027763000002774 |
Reference:
|
[12] Mikulski, W. M.: Product preserving bundle functors on fibered manifolds.Arch. Math., Brno 32 (1996), 307-316. Zbl 0881.58002, MR 1441401 |
Reference:
|
[13] Muñoz, J., Rodriguez, J., Muriel, F. J.: Weil bundles and jet spaces.Czech. Math. J. 50 (2000), 721-748. Zbl 1079.58500, MR 1792967, 10.1023/A:1022408527395 |
Reference:
|
[14] Nishimura, H.: Axiomatic differential geometry I--1---towards model categories of differential geometry.Math. Appl., Brno 1 (2012), 171-182. Zbl 1285.51009, MR 3275606, 10.13164/ma.2012.11 |
Reference:
|
[15] Shurygin, V. V.: The structure of smooth mappings over Weil algebras and the category of manifolds over algebras.Lobachevskii J. Math. 5 (1999), 29-55. Zbl 0985.58001, MR 1752307 |
Reference:
|
[16] Shurygin, V. V.: Some aspects of the theory of manifolds over algebras and Weil bundles.J. Math. Sci., New York 169 (2010), 315-341 translation from \global\questionmarktrue Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 123 2009 211-255. Zbl 1226.53032, MR 2866746, 10.1007/s10958-010-0051-6 |
Reference:
|
[17] Tomáš, J. M.: On bundles of covelocities.Lobachevskii J. Math. 30 (2009), 280-288. Zbl 1223.58005, MR 2587851, 10.1134/S1995080209040064 |
Reference:
|
[18] Tomáš, J.: Some results on bundles of covelocities.J. Appl. Math., Aplimat V 4 (2011), 297-306. MR 3144090 |
Reference:
|
[19] Tomáš, J.: Bundles of $(p, A)$-covelocities and $(p, A)$-jets.Miskolc Math. Notes 14 (2013), 547-555. Zbl 1299.58010, MR 3144090, 10.18514/MMN.2013.914 |
Reference:
|
[20] Weil, A.: Théorie des points proches sur les variétés des différentiables.Colloques internat. Centre nat. Rech. Sci. 52 (1953), French 111-117. Zbl 0053.24903, MR 0061455 |
. |