Previous |  Up |  Next

Article

Keywords:
generalized Lorenz system; generalized synchronization; chaos; networks
Summary:
Generalized synchronization in the direct acyclic networks, i.e. the networks represented by the directed tree, is presented here. Network nodes consist of copies of the so-called generalized Lorenz system with possibly different parameters yet mutually structurally equivalent. The difference in parameters actually requires the generalized synchronization rather than the identical one. As the class of generalized Lorenz systems includes the well-known particular classes such as (classical) Lorenz system, Chen system, or Lü system, all these classes can be synchronized using the presented approach as well. The main theorem is rigorously mathematically formulated and proved in detail. Extensive numerical simulations are included to illustrate and further substantiate these theoretical results. Moreover, during these numerical experiments, the so-called duplicated system approach is used to double-check the generalized synchronization.
References:
[1] Abarbanel, H. D. I., Rulkov, N. F., Sushchik, M. M.: Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E 53 (1996), 5, 4528-4535. DOI 
[2] Afraimovich, V. S., Verichev, N. N., Rabinovich, M. I.: Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum El. 29 (1086), 9, 795-803. DOI  | MR 0877439
[3] Bao, H., Cao, J.: Finite-time generalized synchronization of nonidentical delayed chaotic systems. Nonlinear Anal. Model. 21 (2016), 3, 306-324. DOI  | MR 3457508
[4] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-2, 1-101. DOI  | MR 1913567 | Zbl 0995.37022
[5] Boccaletti, S., Pisarchik, A., Genio, C. del, Amann, A.: Synchronization: From Coupled Systems to Complex Networks. Cambridge University Press, 2018. MR 3823205
[6] Čelikovský, S., Chen, G.: On a generalized {Lorenz} canonical form of chaotic systems. Int. J. Bifurcat. Chaos 12 (2002), 08, 1789-1812. DOI  | MR 1927413
[7] Čelikovský, S., Vaněček, A.: Bilinear systems and chaos. Kybernetika 30 (1994), 4, 403-424. DOI  | MR 1303292 | Zbl 0823.93026
[8] Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 09 (1999), 07, 1465-1466. DOI  | MR 1729683 | Zbl 0962.37013
[9] Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks: Models, Structures and Dynamics. Wiley, 2014.
[10] Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69 (1983), 1, 32-47. DOI  | MR 0699754
[11] Khalil, H. K.: Nonlinear Systems. Pearson, Upper Saddle River, NJ, 3 edition, 2002. Zbl 1194.93083
[12] Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76 (1996), 11, 1816-1819. DOI 
[13] Liu, J., Chen, G., Zhao, X.: Generalized synchronization and parameters identification of different-dimensional chaotic systems in the complex field. Fractals 29 (2021), 04, 2150081. DOI 
[14] Lorenz, E. N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963), 2, 130-141. DOI  | MR 4021434
[15] Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12 (2002), 03, 659-661. DOI  | MR 1894886 | Zbl 1063.34510
[16] Lynnyk, V., Rehák, B., Čelikovský, S.: On detection of generalized synchronization in the complex network with ring topology via the duplicated systems approach. In: 8th International Conference on Systems and Control ({ICSC}), IEEE 2019, pp. 251-256. DOI 
[17] Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82 (1999), 15, 3042-3045. DOI 
[18] Müller, M. A., Martínez-Guerrero, A., Corsi-Cabrera, M., Effenberg, A. O., Friedrich, A., Garcia-Madrid, I., Hornschuh, M., Schmitz, G., Müller, M. F.: How to orchestrate a soccer team: Generalized synchronization promoted by rhythmic acoustic stimuli. Front. Hum. Neurosci. 16 (2022). DOI 10.3389/fnhum.2022.909939
[19] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 8), 821-824. DOI  | MR 1038263 | Zbl 1098.37553
[20] Pikovsky, A. S.: On the interaction of strange attractors. Z. Phys. B Con. Mat. 55 (1984), 2, 149-154. DOI  | MR 0747464
[21] Pyragas, K.: Weak and strong synchronization of chaos. Phys. Rev. E 54 (1996), 5, R4508-R4511. DOI 
[22] Rehák, B., Lynnyk, V.: Decentralized networked stabilization of a nonlinear large system under quantization. In: Proc. 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys 2019), pp. 1-6.
[23] Rehák, B., Lynnyk, V.: Network-based control of nonlinear large-scale systems composed of identical subsystems. J. Franklin I. 356 (2019), 2, 1088-1112. DOI  | MR 3912566
[24] Rehák, B., Lynnyk, V.: Synchronization of symmetric complex networks with heterogeneous time delays. In: 2019 22nd International Conference on Process Control (PC), IEEE 2019, pp. 68-73. DOI 
[25] Rehák, B., Lynnyk, V.: Consensus of a multi-agent systems with heterogeneous delays. Kybernetika (2010), 363-381. MR 4103722
[26] Rehák, B., Lynnyk, V.: Leader-following synchronization of a multi-agent system with heterogeneous delays. Front. Inform. Tech. El. 22 (2021), 1, 97-106. DOI  | MR 4103722
[27] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76 (1996), 11, 1804-1807. DOI  | MR 1869044 | Zbl 0898.70015
[28] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78 (1997), 22, 4193-4196. DOI  | MR 1668374
[29] Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., Abarbanel, H. D. I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51 (1995), 2, 980-994. DOI  | MR 1475525
[30] Wang, Y. W., Guan, Z. H.: Generalized synchronization of continuous chaotic system. Chaos Soliton. Fract. 27 (2006), 1, 97-101. DOI  | MR 2299092
[31] Zhu, Z., Li, S., Yu, H.: A new approach to generalized chaos synchronization based on the stability of the error system. Kybernetika 44 (2008), 8, 492-500. MR 2459067
Partner of
EuDML logo