[1] Abarbanel, H. D. I., Rulkov, N. F., Sushchik, M. M.:
Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E 53 (1996), 5, 4528-4535.
DOI
[2] Afraimovich, V. S., Verichev, N. N., Rabinovich, M. I.:
Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum El. 29 (1086), 9, 795-803.
DOI |
MR 0877439
[3] Bao, H., Cao, J.:
Finite-time generalized synchronization of nonidentical delayed chaotic systems. Nonlinear Anal. Model. 21 (2016), 3, 306-324.
DOI |
MR 3457508
[4] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.:
The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-2, 1-101.
DOI |
MR 1913567 |
Zbl 0995.37022
[5] Boccaletti, S., Pisarchik, A., Genio, C. del, Amann, A.:
Synchronization: From Coupled Systems to Complex Networks. Cambridge University Press, 2018.
MR 3823205
[6] Čelikovský, S., Chen, G.:
On a generalized {Lorenz} canonical form of chaotic systems. Int. J. Bifurcat. Chaos 12 (2002), 08, 1789-1812.
DOI |
MR 1927413
[8] Chen, G., Ueta, T.:
Yet another chaotic attractor. Int. J. Bifurcat. Chaos 09 (1999), 07, 1465-1466.
DOI |
MR 1729683 |
Zbl 0962.37013
[9] Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks: Models, Structures and Dynamics. Wiley, 2014.
[10] Fujisaka, H., Yamada, T.:
Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69 (1983), 1, 32-47.
DOI |
MR 0699754
[11] Khalil, H. K.:
Nonlinear Systems. Pearson, Upper Saddle River, NJ, 3 edition, 2002.
Zbl 1194.93083
[12] Kocarev, L., Parlitz, U.:
Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76 (1996), 11, 1816-1819.
DOI
[13] Liu, J., Chen, G., Zhao, X.:
Generalized synchronization and parameters identification of different-dimensional chaotic systems in the complex field. Fractals 29 (2021), 04, 2150081.
DOI
[14] Lorenz, E. N.:
Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963), 2, 130-141.
DOI |
MR 4021434
[15] Lü, J., Chen, G.:
A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12 (2002), 03, 659-661.
DOI |
MR 1894886 |
Zbl 1063.34510
[16] Lynnyk, V., Rehák, B., Čelikovský, S.:
On detection of generalized synchronization in the complex network with ring topology via the duplicated systems approach. In: 8th International Conference on Systems and Control ({ICSC}), IEEE 2019, pp. 251-256.
DOI
[17] Mainieri, R., Rehacek, J.:
Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82 (1999), 15, 3042-3045.
DOI
[18] Müller, M. A., Martínez-Guerrero, A., Corsi-Cabrera, M., Effenberg, A. O., Friedrich, A., Garcia-Madrid, I., Hornschuh, M., Schmitz, G., Müller, M. F.:
How to orchestrate a soccer team: Generalized synchronization promoted by rhythmic acoustic stimuli. Front. Hum. Neurosci. 16 (2022).
DOI 10.3389/fnhum.2022.909939
[19] Pecora, L. M., Carroll, T. L.:
Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 8), 821-824.
DOI |
MR 1038263 |
Zbl 1098.37553
[20] Pikovsky, A. S.:
On the interaction of strange attractors. Z. Phys. B Con. Mat. 55 (1984), 2, 149-154.
DOI |
MR 0747464
[21] Pyragas, K.:
Weak and strong synchronization of chaos. Phys. Rev. E 54 (1996), 5, R4508-R4511.
DOI
[22] Rehák, B., Lynnyk, V.: Decentralized networked stabilization of a nonlinear large system under quantization. In: Proc. 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys 2019), pp. 1-6.
[23] Rehák, B., Lynnyk, V.:
Network-based control of nonlinear large-scale systems composed of identical subsystems. J. Franklin I. 356 (2019), 2, 1088-1112.
DOI |
MR 3912566
[24] Rehák, B., Lynnyk, V.:
Synchronization of symmetric complex networks with heterogeneous time delays. In: 2019 22nd International Conference on Process Control (PC), IEEE 2019, pp. 68-73.
DOI
[25] Rehák, B., Lynnyk, V.:
Consensus of a multi-agent systems with heterogeneous delays. Kybernetika (2010), 363-381.
MR 4103722
[26] Rehák, B., Lynnyk, V.:
Leader-following synchronization of a multi-agent system with heterogeneous delays. Front. Inform. Tech. El. 22 (2021), 1, 97-106.
DOI |
MR 4103722
[27] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.:
Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76 (1996), 11, 1804-1807.
DOI |
MR 1869044 |
Zbl 0898.70015
[28] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.:
From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78 (1997), 22, 4193-4196.
DOI |
MR 1668374
[29] Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., Abarbanel, H. D. I.:
Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51 (1995), 2, 980-994.
DOI |
MR 1475525
[30] Wang, Y. W., Guan, Z. H.:
Generalized synchronization of continuous chaotic system. Chaos Soliton. Fract. 27 (2006), 1, 97-101.
DOI |
MR 2299092
[31] Zhu, Z., Li, S., Yu, H.:
A new approach to generalized chaos synchronization based on the stability of the error system. Kybernetika 44 (2008), 8, 492-500.
MR 2459067