Previous |  Up |  Next

Article

Keywords:
$L$-limited property; $p$-(SR) property; $p$-$L$-limited property; sequentially Right property
Summary:
We give sufficient conditions implying that the projective tensor product of two Banach spaces $X$ and $Y$ has the $p$-sequentially Right and the $p$-$L$-limited properties, $1\le p<\infty$.
References:
[1] Alikhani M.: Sequentially right-like properties on Banach spaces. Filomat 33 (2019), no. 14, 4461–4474. DOI 10.2298/FIL1914461A | MR 4049162
[2] Andrews K. T.: Dunford–Pettis sets in the space of Bochner integrable functions. Math. Ann. 241 (1979), no. 1, 35–41. DOI 10.1007/BF01406706 | MR 0531148
[3] Bessaga C., Pełczyński A.: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151–164. DOI 10.4064/sm-17-2-151-164 | MR 0115069
[4] Bombal F., Emmanuele G.: Remarks on completely continuous polynomials. Quaestiones Math. 20 (1997), no. 1, 85–93. DOI 10.1080/16073606.1997.9631856 | MR 1454563
[5] Bourgain J.: New Classes of $\mathcal{L}_p$-Spaces. Lecture Notes in Mathematics, 889, Springer, Berlin, 1981. MR 0639014
[6] Bourgain J., Diestel J.: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55–58. DOI 10.1002/mana.19841190105 | MR 0774176 | Zbl 0601.47019
[7] Carrión H., Galindo P., Laurenço M. L.: A stronger Dunford–Pettis property. Studia Math. 184 (2008), no. 3, 205–216. DOI 10.4064/sm184-3-1 | MR 2369139
[8] Castillo J. M. F., Sánchez F.: Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024
[9] Cembranos P.: $C(K,E)$ contains a complemented copy of $c_0$. Proc. Amer. Math Soc. 91 (1984), no. 4, 556–558. MR 0746089
[10] Cilia R., Emmanuele G.: Some isomorphic properties in $K(X, Y)$ and in projective tensor products. Colloq. Math. 146 (2017), no. 2, 239–252. DOI 10.4064/cm6184-12-2015 | MR 3622375
[11] Diestel J.: A survey of results related to the Dunford–Pettis property. Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pages 15–60. MR 0621850
[12] Diestel J.: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004
[13] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. MR 1342297 | Zbl 1139.47021
[14] Diestel J., Uhl J. J., Jr.: Vector Measures. Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. MR 0453964 | Zbl 0521.46035
[15] Emmanuele G.: A remark on the containment of $c_0$ in spaces of compact operators. Math. Proc. Cambridge. Philos. Soc. 111 (1992), no. 2, 331–335. DOI 10.1017/S0305004100075435 | MR 1142753
[16] Fourie J. H., Zeekoei E. D.: $DP^*$-properties of order $p$ on Banach spaces. Quaest. Math. 37 (2014), no. 3, 349–358. DOI 10.2989/16073606.2013.779611 | MR 3285289
[17] Fourie J. H., Zeekoei E. D.: On weak-star-$p$-convergent operators. Quaest. Math. 40 (2017), no. 5, 563–579. DOI 10.2989/16073606.2017.1301591 | MR 3691468
[18] Ghenciu I.: Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products. Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR 3390279
[19] Ghenciu I.: A note on some isomorphic properties in projective tensor products. Extracta Math. 32 (2017), no. 1, 1–24. MR 3726522
[20] Ghenciu I.: Dunford–Pettis like properties on tensor products. Quaest. Math. 41 (2018), no. 6, 811–828. DOI 10.2989/16073606.2017.1402383 | MR 3857131
[21] Ghenciu I.: Some classes of Banach spaces and complemented subspaces of operators. Adv. Oper. Theory 4 (2019), no. 2, 369–387. DOI 10.15352/aot.1802-1318 | MR 3883141
[22] Ghenciu I., Lewis P.: The embeddability of $c_0$ in spaces of operators. Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256. DOI 10.4064/ba56-3-7 | MR 2481977 | Zbl 1167.46016
[23] Ghenciu I., Lewis P.: Completely continuous operators. Colloq. Math. 126 (2012), no. 2, 231–256. DOI 10.4064/cm126-2-7 | MR 2924252 | Zbl 1256.46009
[24] Kačena M.: On sequentially Right Banach spaces. Extracta Math. 26 (2011), no. 1, 1–27. MR 2908388
[25] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 0149295 | Zbl 0107.32504
[26] Pełczyński A., Semadeni Z.: Spaces of continuous functions. III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets. Studia Math. 18 (1959), 211–222. DOI 10.4064/sm-18-2-211-222 | MR 0107806
[27] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: Topological characterization of weakly compact operators. J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. DOI 10.1016/j.jmaa.2006.02.066 | MR 2270063
[28] Rosenthal H. P.: Point-wise compact subsets of the first Baire class. Amer. J. Math. 99 (1977), no. 2, 362–377. DOI 10.2307/2373824 | MR 0438113
[29] Ryan R. A.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer, London, 2002. MR 1888309 | Zbl 1090.46001
[30] Salimi M., Moshtaghioun S. M.: The Gelfand–Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92. DOI 10.15352/bjma/1313363004 | MR 2792501
[31] Salimi M., Moshtaghioun S. M.: A new class of Banach spaces and its relation with some geometric properties of Banach spaces. Hindawi Publishing Corporation, Abstr. Appl. Anal. (2012), Article ID 212957, 8 pages. MR 2910729
[32] Schlumprecht T.: Limited Sets in Banach Spaces. Ph.D. Dissertation, Ludwigs-Maxmilians-Universität, Münich, 1987.
[33] Wen Y., Chen J.: Characterizations of Banach spaces with relatively compact Dunford–Pettis sets. Adv. Math. (China) 45 (2016), no. 1, 122–132. MR 3483491
[34] Wojtaszczyk P.: Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991. MR 1144277
Partner of
EuDML logo