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Some isomorphic properties in projective tensor products

Ioana Ghenciu

Abstract. We give sufficient conditions implying that the projective tensor prod-
uct of two Banach spaces X and Y has the p-sequentially Right and the p-L-
limited properties, 1 ≤ p < ∞.

Keywords: L-limited property; p-(SR) property; p-L-limited property; sequen-
tially Right property

Classification: 46B20, 46B25, 46B28

1. Introduction

For two Banach spaces X and Y , the projective tensor product space of X

and Y will be denoted by X⊗π Y . In [10] it was studied whether X⊗π Y has the

sequentially Right (SR) property or the L-limited property, when X and Y have

the respective property. In [21] we introduced the p-(SR) and the p-L-limited

properties for 1 ≤ p < ∞.

In this paper we use results about relative weak compactness in spaces of

compact operators to study whether the p-(SR) and the p-L-limited properties

lift from the Banach spaces X and Y to X ⊗π Y .

2. Definitions and notation

Throughout this paper, X and Y will denote Banach spaces. The unit ball of X

will be denoted by BX , and X∗ will denote the continuous linear dual of X . The

space X embeds in Y (in symbols X →֒ Y ) if X is isomorphic to a closed subspace

of Y . An operator T : X → Y will be a continuous and linear function. The set

of all operators, weakly compact operators, and compact operators from X to Y

will be denoted by L(X,Y ), W (X,Y ), and K(X,Y ).

A subset S of a Banach space X is said to be weakly precompact (or weakly

conditionally compact) provided that every sequence from S has a weakly Cauchy

subsequence. A Banach space X is called weakly sequentially complete if every
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weakly Cauchy sequence in X is weakly convergent. A Banach space X has the

Grothendieck property if w∗-convergent sequences in X∗ are weakly convergent.

An operator T : X → Y is called completely continuous (or Dunford–Pettis)

if T maps weakly convergent sequences to norm convergent sequences.

A Banach space X has the Dunford–Pettis property (DPP) if every weakly

compact operator T : X → Y is completely continuous for any Banach space Y .

Equivalently, X has the DPP if and only if x∗
n(xn) → 0 whenever (x∗

n) is weakly

null in X∗ and (xn) is weakly null in X , see [11, Theorem 1]. If X is a C(K)-

space or an L1-space, then X has the DPP. The reader can check [12] and [11]

for results related to the DPP.

A bounded subset A of X is called a Dunford–Pettis (or DP) (limited, respec-

tively) subset of X if each weakly null (w∗-null, respectively) sequence (x∗
n) in X∗

tends to 0 uniformly on A; i.e.

sup
x∈A

|x∗
n(x)| → 0.

Every DP (limited, respectively) subset of X is weakly precompact, see [2, page 2],

[28, page 377] ([6, Proposition], [32, Lemma 1.1.5, page 25], respectively).

A bounded subset A of X∗ is called a V -subset of X∗ provided that

sup
x∗∈A

|x∗(xn)| → 0

for each weakly unconditionally convergent series
∑

xn in X .

A Banach space X has property (V ) ((wV ), respectively) if every V -subset

of X∗ is relatively weakly compact [25] (weakly precompact, respectively). A Ba-

nach space X has property (V ) if and only if every unconditionally converging

operator T from X to any Banach space Y is weakly compact, see [25, Proposi-

tion 1]. It is known that C(K) spaces and reflexive spaces have property (V ), see

[25, Theorem 1, Proposition 7]).

For 1 ≤ p < ∞, p∗ denotes the conjugate of p. If p = 1, c0 plays the role

of lp∗ . The unit vector basis of lp will be denoted by (en).

Let 1 ≤ p < ∞. We denote by lp(X) the Banach space of all p-summable

sequences with the norm

‖(xn)‖p =

( ∞
∑

n=1

‖xn‖
p

)1/p

.

Let 1 ≤ p < ∞. A sequence (xn) in X is called weakly p-summable if

(〈x∗, xn〉) ∈ lp for each x∗ ∈ X∗, see [13, page 32], [29, page 134]. Let lwp (X)

denote the set of all weakly p-summable sequences in X . The space lwp (X) is
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a Banach space with the norm

‖(xn)‖
w

p = sup

{( ∞
∑

n=1

|〈x∗, xn〉|
p

)1/p

: x∗ ∈ BX∗

}

.

If p = ∞, then l∞(X) = lw∞(X), see [13, page 33]; if (xn) is a bounded se-

quence in X , then

‖(xn)‖
w

∞ = sup
n

‖xn‖ = ‖(xn)‖∞.

Let cw
0
(X) be the space of weakly null sequences in X . This is a Banach space

with the norm

‖(xn)‖cw
0
= sup

‖x∗‖≤1

‖(〈x∗, xn〉)‖c0 ,

and cw
0
(X) ≃ W (l1, X).

For p = ∞, we consider the space cw
0
(X) instead of lw∞(X) = l∞(X).

If p < q, then lwp (X) ⊆ lwq (X). Further, the unit vector basis of lp∗ is weakly p-

summable for all 1 < p < ∞. The weakly 1-summable sequences are precisely the

weakly unconditionally convergent series and the weakly ∞-summable sequences

are precisely weakly null sequences.

We recall the following isometries: L(lp∗ , X) ≃ lwp (X) for 1 < p < ∞ and

L(c0, X) ≃ lwp (X) for p = 1; T → (T (en)), see [13, Proposition 2.2, page 36].

Let 1 ≤ p ≤ ∞. An operator T : X → Y is called p-convergent if T

maps weakly p-summable sequences into norm null sequences. The set of all

p-convergent operators is denoted by Cp(X,Y ), see [8].

The 1-convergent operators are precisely the unconditionally converging op-

erators and the ∞-convergent operators are precisely the completely continuous

operators. If p < q, then Cq(X,Y ) ⊆ Cp(X,Y ).

A sequence (xn) in X is called weakly p-convergent to x ∈ X if the sequence

(xn − x) is weakly p-summable, see [8]. The weakly ∞-convergent sequences are

precisely the weakly convergent sequences.

Let 1 ≤ p ≤ ∞. A bounded subset K of X is relatively weakly p-compact

(weakly p-compact , respectively) if every sequence in K has a weakly p-convergent

subsequence with limit in X (in K, respectively).

An operator T : X → Y is weakly p-compact if T (BX) is relatively weakly

p-compact, see [8]. The set of weakly p-compact operators T : X → Y will be

denoted by Wp(X,Y ). If p < q, then Wp(X,Y ) ⊆ Wq(X,Y ).

Suppose that 1 ≤ p < ∞. An operator T : X → Y is called p-summing (or

absolutely p-summing) if there is a constant c ≥ 0 such that for any m ∈ N and
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any x1, x2, . . . , xm in X ,

( m
∑

i=1

‖T (xi)‖
p

)1/p

≤ c sup

{( m
∑

i=1

|〈x∗, xi〉|
p

)1/p

: x∗ ∈ BX∗

}

.

The least c for which the previous inequality always holds is denoted by πp(T ),

see [13, page 31]. The set of all p-summing operators from X to Y is denoted by

Πp(X,Y ). The operator T : X → Y is p-summing if and only if (Txn) ∈ lp(Y )

whenever (xn) ∈ lwp (X), see [13, Proposition 2.1, page 34], [12, page 59].

A topological space S is called dispersed (or scattered) if every nonempty closed

subset of S has an isolated point. A compact Hausdorff space K is dispersed if

and only if l1 6 →֒ C(K), see [26, Main Theorem].

The Banach–Mazur distance d(E,F ) between two isomorphic Banach spaces

E and F is defined by inf(‖T ‖‖T−1‖), where the infimum is taken over all iso-

morphisms T from E onto F . A Banach space E is called an L∞-space (L1-space,

respectively) if there is a λ ≥ 1 so that every finite dimensional subspace of E is

contained in another subspace N with d(N, ln∞) ≤ λ (d(N, ln
1
) ≤ λ, respectively)

for some integer n. Complemented subspaces of C(K) spaces (L1(µ) spaces, re-

spectively) are L∞-spaces (L1-spaces, respectively), see [5, Proposition 1.26]. The

dual of an L1- space (L∞-space, respectively) is an L∞-space (L1-space, respec-

tively), see [5, Proposition 1.27].

The L∞-spaces, L1-spaces, and their duals have the DPP, see [5, Corol-

lary 1.30].

3. The p-(SR) and p-L-limited properties in projective tensor products

The Right topology on a Banach space X is the restriction of the Mackey

topology τ(X∗∗, X∗) to X and it is also the topology of uniform convergence

on absolutely convex σ(X∗, X∗∗) compact subsets of X∗, see [27]. Further,

τ(X∗∗, X∗) can also be viewed as the topology of uniform convergence on rel-

atively σ(X∗, X∗∗) compact subsets of X∗, see [24].

An operator T : X → Y is pseudo weakly compact (pwc) (or Dunford–Pettis

completely continuous (DPcc)) if it takes weakly null DP sequences in X into

norm null sequences in Y , see [19], [33].

A sequence (xn) in a Banach space X is Right null if and only if it is weakly

null and DP, see [19, Proposition 1].

A bounded subset K of X∗ is called a Right set or R-set if

sup
x∗∈K

|x∗(xn)| → 0

for each Right null sequence (xn) in X .



Some isomorphic properties in projective tensor products 477

A Banach space X is sequentially Right (SR) (or X has property (SR)) if every

pseudo weakly compact operator T : X → Y is weakly compact for any Banach

space Y , see [27].

A Banach space X is sequentially Right if and only if every Right subset of X∗

is relatively weakly compact, see [24, Theorem 3.25].

A Banach space X is weak sequentially Right (wSR) (or has the (wSR) prop-

erty) if every Right subset of X∗ is weakly precompact, see [19].

Let 1 ≤ p < ∞. An operator T : X → Y is called DP p-convergent if it takes

DP weakly p-summable sequences to norm null sequences, see [21].

Let 1 ≤ p ≤ ∞. A bounded subset A of a dual space X∗ is called a p-Right

set, see [21], if for every DP weakly p-summable sequence (xn) in X ,

sup
x∗∈A

|x∗(xn)| → 0.

Let 1 ≤ p ≤ ∞. A Banach space X has the p-(SR) (p-(wSR), respectively)

property if every p-Right subset of X∗ is relatively weakly compact (weakly pre-

compact, respectively).

The ∞-Right subsets of X∗ are precisely the Right subsets and the ∞-(SR)

property coincides with the (SR) property. If p < q, then a q-Right set in X∗ is

a p-Right set, since lwp (X) ⊆ lwq (X). If X has the p-(SR) property, then it has

the q-(SR) property, if p < q.

If 1 ≤ p < ∞ and X has the p-(SR) property, then X has the (SR) property,

and thus X∗ is weakly sequentially complete, see [21, Proposition 3.3].

A bounded subset A of X∗ is called an L-limited set, see [31], if

sup
x∗∈A

|x∗(xn)| → 0

for each limited weakly null sequence (xn) in X .

A Banach space X has the L-limited property (wL-limited property, respec-

tively) if every L-limited subset of X∗ is relatively weakly compact, see [31],

(weakly precompact, respectively, see [19]).

An operator T : X → Y is called limited completely continuous (lcc) if T

maps limited weakly null sequences to norm null sequences, see [30].

Let 1 ≤ p < ∞. An operator T : X → Y is called limited p-convergent if it

carries limited weakly p-summable sequences in X to norm null ones in Y , see [17].

Let 1 ≤ p ≤ ∞. A bounded subset A of a dual space X∗ is called a p-L-limited

set, see [21], if for every limited weakly p-summable sequence (xn) in X ,

sup
x∗∈A

|x∗(xn)| → 0.
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Let 1 ≤ p ≤ ∞. A Banach space X has the p-L-limited property, see [21], (p-

wL-limited property, respectively) if every p-L-limited subset of X∗ is relatively

weakly compact (weakly precompact, respectively).

The ∞-L-limited property coincides with the L-limited property. If X has

the p-L-limited property, then X has the L-limited property. Consequently,

X∗ is weakly sequentially complete and X has the Grothendieck property, see

[21, Proposition 3.3].

In the following we consider the p-(SR) and p-L-limited properties in the pro-

jective tensor product X ⊗π Y .

If H ⊆ L(X,Y ), x ∈ X and y∗ ∈ Y ∗, let H(x) = {T (x) : T ∈ H} and

H∗(y∗) = {T ∗(y∗) : T ∈ H}.

In the proof of Theorem 3.3 we will need the following results. We include the

proof of the first result for the convenience of the reader.

Lemma 3.1 ([20]). Let 1 ≤ p < ∞. Suppose that L(X,Y ∗) = Πp(X,Y ∗). If

(xn) is weakly p-summable in X and (yn) is bounded in Y , then (xn ⊗ yn) is

weakly p-summable in X ⊗π Y .

Proof: Without loss of generality suppose ‖(xn)‖
w

p ≤ 1 and ‖yn‖ ≤ 1. Let

T ∈ (X ⊗π Y )∗ ≃ L(X,Y ∗), see [14, page 230]. Then

∑

n

|〈T, xn ⊗ yn〉|
p ≤

∑

n

‖T (xn)‖
p ≤ πp(T )

p.

Thus (xn ⊗ yn) is weakly p-summable in X ⊗π Y . �

Lemma 3.2 ([4, Lemma 2]). Let (xn) be a DP sequence in X weakly converging

to x ∈ X and (yn) be a DP sequence in Y weakly converging to y ∈ Y . Then

(xn ⊗ yn) is a DP sequence in X ⊗π Y that converges weakly to x⊗ y.

Theorem 3.3. Let 1 ≤ p <∞. Suppose that L(X,Y ∗) = K(X,Y ∗) = Πp(X,Y ∗).

If X and Y have the p-(SR) property, then X ⊗π Y has the p-(SR) property.

Proof: Let H be a p-Right subset of L(X,Y ∗) = K(X,Y ∗) = Πp(X,Y ∗) and

let (Tn) be a sequence in H . By [18, Theorem 3], it is enough to show that (i)

H(x) is relatively weakly compact for all x ∈ X and (ii) H∗(y∗∗) is relatively

weakly compact for all y∗∗ ∈ Y ∗∗. Let x ∈ X . We show that {Tn(x) : n ∈ N} is

a p-Right subset of Y ∗. Suppose (yn) is a DP weakly p-summable sequence

in Y . Let T ∈ L(X,Y ∗) ≃ (X ⊗π Y )∗, see [14, page 230]. Because T is

weakly compact, T ∗∗(X∗∗) ⊆ Y ∗. If x∗∗ ∈ X∗∗, then
∑

n |〈x
∗∗, T ∗(yn)〉|

p =
∑

n |〈T
∗∗(x∗∗), yn〉|

p < ∞. Thus (T ∗(yn)) is weakly p-summable in X∗. Hence

∑

n

|〈T, x⊗ yn〉|
p =

∑

n

|〈x, T ∗(yn)〉|
p < ∞.
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Thus (x ⊗ yn) is weakly p-summable in X ⊗π Y . Let (An) be a weakly null

sequence in L(X,Y ∗) ≃ (X ⊗π Y )∗. Then (An(x)) is weakly null in Y ∗ and

〈An, x⊗ yn〉 = 〈An(x), yn〉 → 0,

since (yn) is a DP sequence in Y . Therefore (x⊗ yn) is a DP sequence in X⊗π Y .

Since (Tn) is a p-Right set,

〈Tn, x⊗ yn〉 = 〈Tn(x), yn〉 → 0.

Therefore {Tn(x) : n ∈ N} is a p-Right subset of Y ∗, hence relatively weakly

compact.

Let y∗∗ ∈ Y ∗∗. We show that {T ∗
n(y

∗∗) : n ∈ N} is a p-Right subset of X∗.

Suppose (xn) is a DP weakly p-summable sequence in X . For n ∈ N,

〈T ∗
n(y

∗∗), xn〉 = 〈y∗∗, Tn(xn)〉.

We show that (Tn(xn)) is a p-Right subset of Y ∗. Suppose that (yn) is a DP

weakly p-summable sequence in Y . By Lemma 3.1, (xn⊗yn) is weakly p-summa-

ble in X ⊗π Y . By Lemma 3.2, (xn ⊗ yn) is a DP sequence in X ⊗π Y . Since

{Tn : n ∈ N} is a p-Right set,

〈Tn, xn ⊗ yn〉 = 〈Tn(xn), yn〉 → 0.

Therefore (Tn(xn)) is a p-Right subset of Y ∗, and thus relatively weakly compact.

Let y ∈ Y . An argument similar to the one above shows that (xn ⊗ y) is a DP

weakly p-summable sequence in X ⊗π Y . Note that

〈Tn, xn ⊗ y〉 = 〈Tn(xn), y〉 → 0,

since (Tn) is a p-Right set. Thus (Tn(xn)) is w∗-null. Therefore (Tn(xn)) is

weakly null. This implies that {T ∗
n(y

∗∗) : n ∈ N} is a p-Right subset of X∗,

thus relatively weakly compact. Then H is relatively weakly compact by [18,

Theorem 3]. �

Theorem 3.4. Let 1 ≤ p <∞. Suppose that L(X,Y ∗) = K(X,Y ∗) = Πp(X,Y ∗).

If X and Y have the p-L-limited property, then X ⊗π Y has the p-L-limited

property.

Proof: The proof is similar to the proof of Theorem 3.3 and uses [4, Lem-

ma 4]. �

If L(X,Y ∗) = K(X,Y ∗), X has the p-(SR) property and Y is reflexive, then

X⊗πY has the p-(SR) property, see [1, Theorem 3.20]. We obtain a similar result

for the p-L-limited property.
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Theorem 3.5. Let 1 ≤ p < ∞. Suppose that L(X,Y ∗) = K(X,Y ∗). If X has

the p-L-limited property and Y is reflexive, then X ⊗π Y has the p-L-limited

property.

Proof: Let H be a p-L-limited subset of L(X,Y ∗) = K(X,Y ∗) and let (Tn)

be a sequence in H . Let x ∈ X . The set {Tn(x) : n ∈ N} is a bounded set in

a reflexive space, so it is relatively weakly compact.

Let y ∈ Y ∗∗ ≃ Y . We show that {T ∗
n(y) : n ∈ N} is a p-L-limited subset

of X∗. Suppose (xn) is a limited weakly p-summable sequence in X . The proof

of Theorem 3.3 shows that (xn ⊗ y) is weakly p-summable in X ⊗π Y . Let (An)

be a w∗-null sequence in L(X,Y ∗) ≃ (X ⊗π Y )∗. Then (A∗
n(y)) is w

∗-null in X∗

and

〈An, xn ⊗ y〉 = 〈A∗
n(y), xn〉 → 0,

since (xn) is a limited sequence in X . Therefore (xn ⊗ y) is a limited sequence in

X ⊗π Y . Since (Tn) is a p-L-limited set,

〈Tn, xn ⊗ y〉 = 〈T ∗
n(y), xn〉 → 0.

Therefore {T ∗
n(y) : n ∈ N} is a p-L-limited subset of X∗, and thus relatively

weakly compact. Then H is relatively weakly compact by [18, Theorem 3]. �

Corollary 3.6. Let 1 ≤ p < ∞. Suppose L(X,Y ∗) = Πp(X,Y ∗) and X and Y

have the p-(SR) property. If l1 6 →֒ X (or Y ∗ has the Schur property), then

X ⊗π Y has the p-(SR) property.

Proof: Let T : X → Y ∗ be an operator. Since T is p-summing, it is weakly

compact and completely continuous, see [13, Theorem 2.17].

Thus T is compact by a result of E. Odell in [28, page 377]. If Y ∗ has the Schur

property, then T is compact (since it is also weakly compact). Then L(X,Y ∗) =

K(X,Y ∗). Apply Theorem 3.3. �

Observation 1.

(i) Let 1 ≤ p ≤ 2. If X is an L∞-space and Y is an Lp-space, then every

operator T : X → Y is 2-summing, see [13, Theorem 3.7].

(ii) If X and Y are L∞-spaces, then L(X,Y ∗) = Πp(X,Y ∗), 2 ≤ p < ∞.

Indeed, by (i), every operator T : X → Y ∗ is 2-summing, and thus p-

summing, 2 ≤ p < ∞.

(iii) If X and Y are infinite dimensional L∞-spaces, then L(X,Y ∗) =

CC(X,Y ∗) by [13, Theorems 3.7 and 2.17].

Corollary 3.7. Let 2 ≤ p < ∞. Suppose X and Y are L∞-spaces and l1 6 →֒ X

(or l1 6 →֒ Y ). If X and Y have the p-(SR) property, then X ⊗π Y has the p-(SR)

property.
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Proof: Suppose l1 6 →֒ X . By Observation 1, L(X,Y ∗) = Πp(X,Y ∗). By Corol-

lary 3.6, X⊗π Y has the p-(SR) property. If l1 6 →֒ Y , then the previous argument

shows that Y ⊗π X has the p-(SR) property. Hence X ⊗π Y ≃ Y ⊗π X has the

p-(SR) property. �

Let 1 ≤ p ≤ ∞. A Banach space X has the Dunford–Pettis property of order p

(DPPp) if every weakly compact operator T : X → Y is p-convergent for any

Banach space Y , see [8].

If X has the DPP, then X has the DPPp for all 1 < p < ∞.

A Banach space X has the DP∗-property (DP∗P) if all weakly compact sets

in X are limited, see [7].

The space X has the DP∗P if and only if L(X, c0) = CC(X, c0), see [7, Propo-

sition 2.1], [23, Theorem 1]. If X has the DP∗P, then it has the DPP. If X is

a Schur space or if X has the DPP and the Grothendieck property, then X has

the DP∗P.

Let 1 ≤ p ≤ ∞. A Banach space X has the DP∗-property of order p (DP∗Pp)

if all weakly p-compact sets in X are limited, see [16].

If X has the DP∗P, then X has the DP∗Pp for all 1 ≤ p < ∞. If X has the

DP∗Pp, then X has the DPPp.

If X has property (V ), then X has the (SR) property, see [10, page 247].

Proposition 3.8. Let 1 ≤ p < ∞.

(i) If X has the DPPp and property (V ), then X has the p-(SR) property.

(ii) If X has the DP∗Pp and property (V), then X has the p-L-limited prop-

erty.

(iii) If X is an L∞-space, then X∗∗ has the p-(SR) property and the p-L-

limited property.

Proof: (i) Let T : X → Y be a DP p-convergent operator. Then T is p-conver-

gent, since X has the DPPp, see [21, Theorem 3.18]. Since T is unconditionally

convergent and X has property (V ), T is weakly compact. Then X has the p-(SR)

property, see [21, Theorem 3.10].

(ii) Let T : X → Y be a limited p-convergent operator. Then T is p-conver-

gent, since X has the DP∗Pp, see [21, Theorem 3.17]. As above, T is weakly

compact, and thus X has the p-L-limited property, see [21, Theorem 3.10].

(iii) Since X is an L∞-space, X∗∗ is complemented in some C(K) space, see

[13, Theorem 3.2]. Moreover, C(K) spaces have the p-(SR) property (by (i)).

Thus X∗∗ has the p-(SR) property and property (V ) (since these properties are

inherited by quotients). Further, X∗∗ has the DP∗P, see [23, Corollary 5], thus

the DP∗Pp. Then X∗∗ has the p-L-limited property. �



482 I. Ghenciu

Proposition 3.9. Let 1 ≤ p ≤ ∞. A Banach space X has the p-L-limited

property if and only if it has the p-(SR) property and the Grothendieck property.

Proof: The case p = ∞ is [10, Proposition 24].

Let 1 ≤ p < ∞. Suppose X has the p-L-limited property. Then X has the

p-(SR) property and the Grothendieck property, see [21, Proposition 3.3].

Conversely, supposeX has the p-(SR) property and the Grothendieck property.

Since X has the Grothendieck property, any DP set in X is limited. Hence any

DP weakly p-summable sequence in X is limited weakly p-summable. Then any

p-L-limited set in X∗ is a p-Right set, and thus relatively weakly compact. �

Corollary 3.10. Let 2 ≤ p < ∞. Let X = C(K1), Y = C(K2), where K1

and K2 are infinite compact Hausdorff spaces and K1 (or K2) is dispersed. Then

X ⊗π Y has the p-(SR) property.

Proof: We have that C(K) spaces are L∞-spaces, see [13, Theorem 3.2], and

have the p-(SR) property. If K1 (or K2) is dispersed, then l1 6 →֒ C(K1) (or

l1 6 →֒ C(K2)), see [26, Main Theorem]. Apply Corollary 3.7. �

Corollary 3.11. Let 2 ≤ p < ∞. Suppose X and Y are L∞-spaces, l1 6 →֒ Y ,

and Y has the p-(SR) property. Then X∗∗ ⊗π Y has the p-(SR) property.

Proof: Since X is an L∞-space, X∗∗ has the p-(SR) property by Proposition 3.8.

Apply Corollary 3.7. �

Every Lp(µ) space is an Lp-space, 1 ≤ p ≤ ∞, see [13, Theorem 3.2].

Corollary 3.12. Let 1 ≤ p < ∞. Let X be a C(K) space and Y = lr, r > 2.

Then X ⊗π Y has the p-(SR) property.

Proof: Since X is a C(K) space, it has the p-(SR) property. If q is the conju-

gate of r, then 1 < q < 2. Every operator T : C(K) → lq, 1 < q < 2, is compact

[34, Lemma, page 100]. Apply [1, Theorem 3.20]. �

A C(K) space has the Grothendieck property if and only if it contains no

complemented copy of c0, see [9].

Corollary 3.13. Let 1 ≤ p < ∞. Let X be a C(K) space with the Grothendieck

property and Y = lr, r > 2. Then X ⊗π Y has the p-L-limited property.

Proof: Since X is a C(K) space with the Grothendieck property, it has the

DP∗P, see [23, Corollary 5]. Further, X has property (V ), see [25, Theorem 1].

By Proposition 3.8 (or 3.9), X has the p-L-limited property. The proof of Corol-

lary 3.12 shows that L(X,Y ∗) = K(X,Y ∗). Apply Theorem 3.5. �
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Lemma 3.14. Let 1 ≤ p < ∞.

(i) If X is an infinite dimensional space with the Schur property, then X

does not have the p-(wSR) (the p-wL-limited, respectively) property.

(ii) If X has the p-(wSR) (the p-wL-limited, respectively) property, then

l1 6
c
→֒ X and c0 6 →֒ X∗.

Proof: (i) If X is an infinite dimensional space with the Schur property, then X

does not have the (wSR) (the wL-limited, respectively) property, see [19, Corol-

lary 5]. Hence X does not have the p-(wSR) (the p-wL-limited, respectively)

property.

(ii) By (i), l1 does not have the p-(wSR) (the p-wL-limited, respectively) prop-

erty. Since the p-(wSR) (the p-wL-limited, respectively) property is inherited by

quotients, it follows that if X has the p-(wSR) (the p-wL-limited, respectively)

property, then l1 6
c
→֒ X , and c0 6 →֒ X∗, see [3, Theorem 4]. �

Theorem 3.15. Let 1 ≤ p < ∞.

(i) If X⊗πY has the p-(SR) property, thenX and Y have the p-(SR) property

and at least one of them does not contain l1.

(ii) If X ⊗π Y has the p-L-limited property, then X and Y have the p-L-

limited property and at least one of them does not contain l1.

Proof: We only prove (i). The other proof is similar. Suppose that X ⊗π Y has

the p-(SR) property. Then X and Y have the p-(SR) property, since this property

is inherited by quotients. We will show that l1 6 →֒ X or l1 6 →֒ Y . Suppose that

l1 →֒ X and l1 →֒ Y . Hence L1 →֒ X∗, see [12, page 212]. Also, the Rademacher

functions span l2 inside of L1, and thus l2 →֒ X∗. Similarly l2 →֒ Y ∗. Then

c0 →֒ K(X,Y ∗), see [15, page 334], [22, Corollary 24]. By Lemma 3.14 we have

a contradiction that concludes the proof. �

Corollary 3.16. Let 1 ≤ p < ∞. Suppose that L(X,Y ∗) = K(X,Y ∗) =

Πp(X,Y ∗). The following statements are equivalent:

1. (i) X and Y have the p-(SR) property and at least one of them does not

contain l1.

(ii) X ⊗π Y has the p-(SR) property.

2. (i) X and Y have the p-L-limited property and at least one of them does

not contain l1.

(ii) X ⊗π Y has the p-L-limited property.

Proof: We only prove 1. The other proof is similar.

(i) ⇒ (ii) by Theorem 3.3.

(ii) ⇒ (i) by Theorem 3.15. �
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Corollary 3.17. Let 1 ≤ p < ∞. Suppose that X and Y have the DPP and

L(X,Y ∗) = Πp(X,Y ∗). The following statements are equivalent:

(i) X and Y have the p-(SR) property and at least one of them does not

contain l1.

(ii) X ⊗π Y has the p-(SR) property.

Proof: (i) ⇒ (ii) Suppose that X and Y have the DPP. Without loss of gener-

ality suppose that l1 6 →֒ X . Then X∗ has the Schur property, see [11, Theorem 3].

Apply Corollary 3.6.

(ii) ⇒ (i) by Theorem 3.15. �

By Corollary 3.17, the space C(K1)⊗π C(K2) has the p-(SR) property if and

only if either K1 or K2 is dispersed.
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