Previous |  Up |  Next

Article

Keywords:
radical class; semi-simple class; Mal'tsev--Neumann product
Summary:
Malt'tsev--Neumann products of semi-simple classes of associative rings are studied and some conditions which ensure that such a product is again a semi-simple class are obtained. It is shown that both products, $\mathcal{S}_{1}\circ\mathcal{S}_{2}$ and $\mathcal{S}_{2}\circ\mathcal{S}_{1}$ of semi-simple classes $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$ are semi-simple classes if and only if they are equal.
References:
[1] Fuchs L.: Abelian Groups. Springer Monographs in Mathematics, Springer, Cham, 2015. MR 3467030 | Zbl 1265.06054
[2] Gardner B. J.: A note on Mal'tsev–Neumann products of radical classes. Int. Electron. J. Algebra 24 (2018), 1–11. DOI 10.24330/ieja.440117 | MR 3828091
[3] Gardner B. J., Wiegandt R.: Radical Theory of Rings. Monographs and Textbooks in Pure and Applied Mathematics, 261, Marcel Dekker, New York, 2004. MR 2015465
[4] Mal'tsev A. I.: Ob umnozhenii klassov algebraicheskikh sistem. Sibirskii Mat. Zh. 8 (1967), 346–365 (Russian). MR 0213276
[5] Neumann H.: Varieties of Groups. Springer, New York, 1967. MR 0215899 | Zbl 0251.20001
[6] Penza T., Romanowska A. B.: Mal'tsev products of varieties, I. Algebra Universalis 82 (2021), no. 2, Paper No. 33, 19 pages. MR 4251619
[7] Snider R. L.: Subdirect decompositions of extension rings. Michigan Math. J. 16 (1969), 225–226. DOI 10.1307/mmj/1029000265 | MR 0248177
Partner of
EuDML logo