Previous |  Up |  Next

Article

Title: Gradient estimates for elliptic systems in Carnot-Carathéodory spaces (English)
Author: Di Fazio, Giuseppe
Author: Fanciullo, Maria Stella
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 4
Year: 2002
Pages: 605-618
.
Category: math
.
Summary: Let $X=(X_1,X_2,\dots ,X_q)$ be a system of vector fields satisfying the Hör\-man\-der condition. We prove $L^{2,\lambda}_X$ local regularity for the gradient $Xu$ of a solution of the following strongly elliptic system $$ -X^{*}_{\alpha }(a^{\alpha \beta }_{ij}(x)X_{\beta } u^{j})= g_{i}-X^{*}_{\alpha } f^{\alpha }_{i}(x) \quad \forall i=1,2,\dots ,N, $$ where $a^{\alpha \beta }_{ij}(x)$ are bounded functions and belong to Vanishing Mean Oscillation space. (English)
Keyword: elliptic systems
Keyword: Morrey space regularity
Keyword: Carnot-Carathéodory metric
MSC: 35B65
MSC: 35D10
MSC: 35H20
MSC: 35J45
MSC: 35J50
idZBL: Zbl 1090.35058
idMR: MR2045784
.
Date available: 2009-01-08T19:25:40Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119351
.
Reference: [1] Acquistapace P.: On BMO regularity for linear elliptic systems.Ann. Mat. Pura Appl. (4) 161 (1992), 231-269. Zbl 0802.35015, MR 1174819
Reference: [2] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I.Comm. Pure Appl. Math. XII (1959), 623-727. Zbl 0093.10401, MR 0125307
Reference: [3] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II.Comm. Pure Appl. Math. XVII (1964), 35-92. Zbl 0123.28706, MR 0162050
Reference: [4] Bramanti M., Brandolini L.: $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients.Trans. Amer. Math. Soc. 352 2 (2000), 781-822. MR 1608289
Reference: [5] Bramanti M., Brandolini L.: $L^p$ estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups.to appear in Rend. Sem. Mat. Univ. Politec. Torino. Zbl 0935.35037, MR 1962808
Reference: [6] Bramanti M., Brandolini L.: Estimates of BMO type for singular integrals on spaces of homogeneous type and applications to hypoelliptic pdes.preprint. Zbl 1082.35060, MR 2174915
Reference: [7] Bramanti M., Cerutti M.C.: $W^{1,2}_p$ Solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients.Comm. Partial Differential Equations 18 (1993), 1735-1763. Zbl 0816.35045, MR 1239929
Reference: [8] Burger N.: Espace des fonctions à variation moyenne bornée sur un espace de nature homogène.C.R. Acad. Sci. Paris Série A 286 (1978), 139-142. Zbl 0368.46037, MR 0467176
Reference: [9] Campanato S.: Equazioni ellittiche del II ordine e spazi ${\Cal L}^{(2,\lambda)}$.Ann. Mat. Pura Appl. (4) 69 (1965), 321-381. MR 0192168
Reference: [10] Campanato S.: Sistemi ellittici in forma di divergenza. Regolarità all'interno.Quaderni SNS Pisa (1980). MR 0668196
Reference: [11] Cordes H.O.: Zero order a priori estimates for solutions of elliptic differential equations.Proceedings of Symposia in Pure Mathematics IV (1961), 157-166. Zbl 0178.46001, MR 0146511
Reference: [12] Chiarenza F., Franciosi M., Frasca M.: $L\sp p$ estimates for linear elliptic systems with discontinuous coefficients.Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5 (1994), 1 27-32. Zbl 0803.35016, MR 1273890
Reference: [13] Chiarenza F., Frasca M., Longo P.: Interior $W^{2,p}$-estimates for nondivergence elliptic equations with discontinuous coefficients Ricerche Mat..XL (1991), 149-168. Zbl 0772.35017, MR 1191890
Reference: [14] Chiarenza F., Frasca M., Longo P.: $W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients.Trans. Amer. Math. Soc. 336 (1993), 1 841-853. MR 1088476
Reference: [15] Danielli D.: A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations.Potential Anal. 11 (1999), 387-413. MR 1719837
Reference: [16] Danielli D., Garofalo N., Nhieu D.M.: Trace inequalities for Carnot-Carathéodory spaces and applications.Ann. SNS Pisa Cl. Sci. (4) 27 (1998), 195-252. MR 1664688
Reference: [17] Di Fazio G.: $L\sp p$ estimates for divergence form elliptic equations with discontinuous coefficients.Boll. Un. Mat. Ital. A (7) 10 (1996), 2 409-420. MR 1405255
Reference: [18] Di Fazio G., Palagachev D.K.: Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients.Comment. Math. Univ. Carolinae 37 (1996), 3 537-556. MR 1426919
Reference: [19] Di Fazio G., Palagachev D.K.: Oblique derivative problem for quasilinear elliptic equations with VMO coefficients.Bull. Austral. Math. Soc. 53 (1996), 3 501-513. MR 1388600
Reference: [20] Di Fazio G., Ragusa M.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients.J. Funct. Anal. 112 (1993), 2 241-256. MR 1213138
Reference: [21] Di Fazio G., Palagachev D.K., Ragusa M.A.: Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients.J. Funct. Anal. 166 (1999), 2 179-196. MR 1707751
Reference: [22] Franchi B., Gallot S., Wheeden R.L.: Sobolev and isoperimetric inequalities for degenerate metrics.Math. Ann. 300 (1994), 4 557-571. MR 1314734
Reference: [23] Franchi B., Gutiérrez C.E., Wheeden R.L.: Weighted Sobolev-Poincaré inequalities for Grushin type operators.Comm. Partial Differential Equations 19 (1994), 523-604. MR 1265808
Reference: [24] Franchi B., Serra Cassano F.: Regularité partielle pour une classe de systèmes elliptiques dégénérés.C.R. Acad. Sci. Paris Série I 316 (1993), 37-40. MR 1198746
Reference: [25] Garofalo N.: Recent Developments in the Theory of Subelliptic Equations and its Geometric Aspects.Birkhäuser, to appear.
Reference: [26] Garofalo N., Nhieu D.M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces.Comm. Pure Appl. Math. XLIX (1996), 1081-1144. MR 1404326
Reference: [27] Geisler M.: Morrey-Campanato spaces on manifolds.Comment. Math. Univ. Carolinae 29 (1988), 2 309-318. MR 0957401
Reference: [28] Gianazza U.: Higher Integrability for quasi- minima of functionals depending on vector fields.Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 17 (1993), 209-227. MR 1268631
Reference: [29] Giaquinta M.: Multiple integrals in calculus of variations and nonlinear elliptic systems.Ann. of Math. Stud. 105 (1983), Princeton University Press. MR 0717034
Reference: [30] Giaquinta M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems.Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. Zbl 0786.35001, MR 1239172
Reference: [31] Gromov M.: Carnot-Carathéodory spaces seen from within.Inst. Hautes Études Sci. Publ. Math. (1994).
Reference: [32] Guidetti D.: General linear boundary value problems for elliptic operators with VMO coefficients.Math. Nachr. 237 (2002), 62-88. Zbl 1009.35024, MR 1894353
Reference: [33] Hajłasz P.: Sobolev spaces on an arbitrary metric space.Potential Anal. 5 (1996), 403-415.
Reference: [34] Hajłasz P., Koskela P.: Sobolev met Poincaré.Mem. Amer. Math. Soc. 145 (2000), no. 688. MR 1683160
Reference: [35] Hörmander L.: Hypoelliptic second order differential equations.Acta Math. 119 (1967), 147-171. MR 0222474
Reference: [36] Huang Q.: Estimates on the Generalized Morrey spaces $L^{2,\lambda }_\varphi $ and BMO for linear elliptic systems.Indiana Univ. Math. J. 45 2 (1996), 397-439. MR 1414336
Reference: [37] Lu G.: Embedding theorems on Campanato-Morrey space for vector fields on Hörmander type.Approx. Theory Appl. (N.S.) 14 (1998), 1 69-80. MR 1651473
Reference: [38] Lu G.: Embedding theorems on Campanato-Morrey space for vector fields and applications.C.R. Acad. Sci. Paris Série. I 320 (1995), 4 429-434. MR 1320116
Reference: [39] Miranda C.: Sulle equazioni ellittiche del secondo ordine a coefficienti discontinui.Ann. Mat. Pura Appl. 63 (1963), 353-386. MR 0170090
Reference: [40] Sánchez-Calle A.: Fundamental solutions and geometry of the sum of squares of vector fields.Invent. Math. 78 (1984), 143-160. MR 0762360
Reference: [41] Sarason D.: Functions of vanishing mean oscillations.Trans. Amer. Math. Soc. 207 (1975), 391-405. MR 0377518
Reference: [42] Trudinger N.S., Wang X.J.: On the weak continuity of elliptic operators and applications to potential theory.Amer. J. Math. 124 (2002), 2 369-410. Zbl 1067.35023, MR 1890997
Reference: [43] Xu C.-J.: Subelliptic variational problems.Bull. Soc. Math. France 118 (1990), 147-169. MR 1087376
Reference: [44] Xu C.-J., Zuily C.: Higher interior regularity for quasilinear subellliptic systems.Calc. Var. 5 (1997), 323-343. MR 1450714
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-4_3.pdf 252.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo