Previous |  Up |  Next

Article

Title: On nonresonance impulsive functional nonconvex valued differential inclusions (English)
Author: Benchohra, M.
Author: Henderson, J.
Author: Ntouyas, S. K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 4
Year: 2002
Pages: 595-604
.
Category: math
.
Summary: In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces. (English)
Keyword: impulsive functional differential inclusions
Keyword: nonresonance problem
Keyword: fixed \newline point
Keyword: Banach space
MSC: 34A37
MSC: 34A60
MSC: 34G20
MSC: 34G25
MSC: 34K25
MSC: 34K45
idZBL: Zbl 1090.34006
idMR: MR2045783
.
Date available: 2009-01-08T19:25:32Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119350
.
Reference: [1] Bainov D.D., Simeonov P.S.: Systems with Impulse Effect.Ellis Horwood Ltd., Chichister, 1989. Zbl 0714.34083, MR 1010418
Reference: [2] Benchohra M., Eloe P.: On nonresonance impulsive functional differential equations with periodic boundary conditions.Appl. Math. E.-Notes 1 (2001), 65-72. Zbl 0983.34077, MR 1833839
Reference: [3] Benchohra MK., Henderson J., Ntouyas S.K.: On nonresonance impulsive functional differential inclusions with periodic boundary conditions.Intern. J. Appl. Math. 5 (4) (2001), 377-391. Zbl 1038.34083, MR 1852836
Reference: [4] Benchohra M., Henderson J., Ntouyas S.K.: On nonresonance second order impulsive functional differential inclusions with nonlinear boundary conditions.Canad. Appl. Math. Quart., in press. Zbl 1146.34055
Reference: [5] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions.Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl 0346.46038, MR 0467310
Reference: [6] Covitz H., Nadler S.B., Jr.: Multivalued contraction mappings in generalized metric spaces.Israel J. Math. 8 (1970), 5-11. MR 0263062
Reference: [7] Deimling K.: Multivalued Differential Equations.Walter de Gruyter, Berlin-New York, 1992. Zbl 0820.34009, MR 1189795
Reference: [8] Dong Y.: Periodic boundary value problems for functional differential equations with impulses.J. Math. Anal. Appl. 210 (1997), 170-181. Zbl 0878.34059, MR 1449515
Reference: [9] Gorniewicz L.: Topological Fixed Point Theory of Multivalued Mappings.Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999. Zbl 1107.55001, MR 1748378
Reference: [10] Hu Sh., Papageorgiou N.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer Academic Publishers, Dordrecht, Boston, London, 1997. Zbl 0887.47001, MR 1485775
Reference: [11] Lakshmikantham V., Bainov D.D., Simeonov P.S.: Theory of Impulsive Differential Equations.World Scientific, Singapore, 1989. Zbl 0719.34002, MR 1082551
Reference: [12] Nieto J.J.: Basic theory for nonresonance impulsive periodic problems of first order.J. Math. Anal. Appl. 205 (1997), 423-433. Zbl 0870.34009, MR 1428357
Reference: [13] Samoilenko A.M., Perestyuk N.A.: Impulsive Differential Equations.World Scientific, Singapore, 1995. MR 1355787
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-4_2.pdf 216.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo