Previous |  Up |  Next

Article

Title: Existence of solutions for a class of first order boundary value problems (English)
Author: Mouhous, Amirouche
Author: Georgiev, Svetlin Georgiev
Author: Mebarki, Karima
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 141-158
Summary lang: English
.
Category: math
.
Summary: In this work, we are interested in the existence of solutions for a class of first order boundary value problems (BVPs for short). We give new sufficient conditions under which the considered problems have at least one solution, one nonnegative solution and two non trivial nonnegative solutions, respectively. To prove our main results we propose a new approach based upon recent theoretical results. The results complement some recent ones. (English)
Keyword: first order BVPs
Keyword: nonnegative solution
Keyword: fixed point index
Keyword: cone
Keyword: expansive mapping
Keyword: sum of operators
MSC: 34B15
MSC: 34B18
MSC: 47H10
idZBL: Zbl 07584086
idMR: MR4483049
DOI: 10.5817/AM2022-3-141
.
Date available: 2022-09-01T10:16:57Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/150660
.
Reference: [1] Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations.SIAM Classics Appl. Math. 13 (1995). MR 1351005
Reference: [2] Djebali, S., Mebarki, K.: Fixed point index theory for perturbation of expansive mappings by $k$-set contraction.Topol. Methods Nonlinear Anal. 54 (no 2A) (2019), 613–640, DOI 10.12775/TMNA.2019.055. MR 4061312, 10.12775/TMNA.2019.055
Reference: [3] Franco, D., Nieto, J.J., O’Regan, D.: Anti-periodic boundary value problem for nonlinear first-order differential equations.Math. Inequal. Appl. 6 (2003), 477–485. MR 1992487
Reference: [4] Georgiev, S., Kheloufi, A., Mebarki, K.: Classical solutions for the Korteweg-De Vries equation.New trends Nonlinear Anal. Appl., (to appear), 2022.
Reference: [5] Georgiev, S., Zennir, K.: Existence of solutions for a class of nonlinear impulsive wave equations.Ric. Mat. (2021), https://doi.org/10.1007/s11587-021-00649-2. MR 4440734, 10.1007/s11587-021-00649-2
Reference: [6] Hong, S.: Boundary-value problems for first and second order functional differential inclusions.EJDE 2033 (no 32) (2003), 1–10. MR 1971018
Reference: [7] Peng, S.: Positive solutions for first order periodic boundary value problem.Appl. Math. Comput. 158 (2004), 345–351. MR 2094624, 10.1016/j.amc.2003.08.090
Reference: [8] Tisdell, C.C.: Existence of solutions to first-order periodic boundary value problems.J. Math. Anal. Appl. 323 (2006), 1325–1332. MR 2260183, 10.1016/j.jmaa.2005.11.047
Reference: [9] Tisdell, C.C.: On the solvability of nonlinear first-order boundary value problems.EJDE 2006 (no 80) (2006), 1–8. MR 2240828
Reference: [10] Wang, D.B.: Periodic boundary value problems for nonlinear first-order impulsive dynamic equations on time scales.Adv. Difference Equ. 2012 (12) (2012), 9 pp. MR 2915355
Reference: [11] Xiang, T., Yuan, R.: A class of expansive-type Krasnosel’skii fixed point theorems.Nonlinear Anal. 71 (2009), 3229–3239. MR 2532845, 10.1016/j.na.2009.01.197
Reference: [12] Xing, Y., Fu, Y.: Some new results for BVPs of first-order nonlinear integro-differential equations of volterra type.Adv. Difference Equ. 2011 (14) (2011), 17 pp. MR 2824941
.

Files

Files Size Format View
ArchMathRetro_058-2022-3_2.pdf 474.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo