Title:
|
Existence of solutions for a class of first order boundary value problems (English) |
Author:
|
Mouhous, Amirouche |
Author:
|
Georgiev, Svetlin Georgiev |
Author:
|
Mebarki, Karima |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
141-158 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this work, we are interested in the existence of solutions for a class of first order boundary value problems (BVPs for short). We give new sufficient conditions under which the considered problems have at least one solution, one nonnegative solution and two non trivial nonnegative solutions, respectively. To prove our main results we propose a new approach based upon recent theoretical results. The results complement some recent ones. (English) |
Keyword:
|
first order BVPs |
Keyword:
|
nonnegative solution |
Keyword:
|
fixed point index |
Keyword:
|
cone |
Keyword:
|
expansive mapping |
Keyword:
|
sum of operators |
MSC:
|
34B15 |
MSC:
|
34B18 |
MSC:
|
47H10 |
idZBL:
|
Zbl 07584086 |
idMR:
|
MR4483049 |
DOI:
|
10.5817/AM2022-3-141 |
. |
Date available:
|
2022-09-01T10:16:57Z |
Last updated:
|
2023-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150660 |
. |
Reference:
|
[1] Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations.SIAM Classics Appl. Math. 13 (1995). MR 1351005 |
Reference:
|
[2] Djebali, S., Mebarki, K.: Fixed point index theory for perturbation of expansive mappings by $k$-set contraction.Topol. Methods Nonlinear Anal. 54 (no 2A) (2019), 613–640, DOI 10.12775/TMNA.2019.055. MR 4061312, 10.12775/TMNA.2019.055 |
Reference:
|
[3] Franco, D., Nieto, J.J., O’Regan, D.: Anti-periodic boundary value problem for nonlinear first-order differential equations.Math. Inequal. Appl. 6 (2003), 477–485. MR 1992487 |
Reference:
|
[4] Georgiev, S., Kheloufi, A., Mebarki, K.: Classical solutions for the Korteweg-De Vries equation.New trends Nonlinear Anal. Appl., (to appear), 2022. |
Reference:
|
[5] Georgiev, S., Zennir, K.: Existence of solutions for a class of nonlinear impulsive wave equations.Ric. Mat. (2021), https://doi.org/10.1007/s11587-021-00649-2. MR 4440734, 10.1007/s11587-021-00649-2 |
Reference:
|
[6] Hong, S.: Boundary-value problems for first and second order functional differential inclusions.EJDE 2033 (no 32) (2003), 1–10. MR 1971018 |
Reference:
|
[7] Peng, S.: Positive solutions for first order periodic boundary value problem.Appl. Math. Comput. 158 (2004), 345–351. MR 2094624, 10.1016/j.amc.2003.08.090 |
Reference:
|
[8] Tisdell, C.C.: Existence of solutions to first-order periodic boundary value problems.J. Math. Anal. Appl. 323 (2006), 1325–1332. MR 2260183, 10.1016/j.jmaa.2005.11.047 |
Reference:
|
[9] Tisdell, C.C.: On the solvability of nonlinear first-order boundary value problems.EJDE 2006 (no 80) (2006), 1–8. MR 2240828 |
Reference:
|
[10] Wang, D.B.: Periodic boundary value problems for nonlinear first-order impulsive dynamic equations on time scales.Adv. Difference Equ. 2012 (12) (2012), 9 pp. MR 2915355 |
Reference:
|
[11] Xiang, T., Yuan, R.: A class of expansive-type Krasnosel’skii fixed point theorems.Nonlinear Anal. 71 (2009), 3229–3239. MR 2532845, 10.1016/j.na.2009.01.197 |
Reference:
|
[12] Xing, Y., Fu, Y.: Some new results for BVPs of first-order nonlinear integro-differential equations of volterra type.Adv. Difference Equ. 2011 (14) (2011), 17 pp. MR 2824941 |
. |