Previous |  Up |  Next

Article

Title: On the optimality of the max-depth and max-rank classifiers for spherical data (English)
Author: Vencálek, Ondřej
Author: Demni, Houyem
Author: Messaoud, Amor
Author: Porzio, Giovanni C.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 3
Year: 2020
Pages: 331-342
Summary lang: English
.
Category: math
.
Summary: The main goal of supervised learning is to construct a function from labeled training data which assigns arbitrary new data points to one of the labels. Classification tasks may be solved by using some measures of data point centrality with respect to the labeled groups considered. Such a measure of centrality is called data depth. In this paper, we investigate conditions under which depth-based classifiers for directional data are optimal. We show that such classifiers are equivalent to the Bayes (optimal) classifier when the considered distributions are rotationally symmetric, unimodal, differ only in location and have equal priors. The necessity of such assumptions is also discussed. (English)
Keyword: depth-based classifier
Keyword: von Mises-Fisher distribution
Keyword: directional data
Keyword: cosine depth
MSC: 62G30
MSC: 62H30
idZBL: 07217114
idMR: MR4114256
DOI: 10.21136/AM.2020.0331-19
.
Date available: 2020-06-10T13:12:59Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148147
.
Reference: [1] Agostinelli, C., Romanazzi, M.: Nonparametric analysis of directional data based on data depth.Environ. Ecol. Stat. 20 (2013), 253-270. MR 3068658, 10.1007/s10651-012-0218-z
Reference: [2] Batschelet, E.: Circular Statistics in Biology.Mathematics in Biology. Academic Press, London (1981). Zbl 0524.62104, MR 0659065
Reference: [3] Bowers, J. A., Morton, I. D., Mould, G. I.: Directional statistics of the wind and waves.Appl. Ocean Research 22 (2000), 13-30. 10.1016/S0141-1187(99)00025-5
Reference: [4] Chang, T.: Spherical regression and the statistics of tectonic plate reconstructions.Int. Stat. Rev. 61 (1993), 299-316. 10.2307/1403630
Reference: [5] Demni, H., Messaoud, A., Porzio, G. C.: The cosine depth distribution classifier for directional data.Applications in Statistical Computing Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham (2019), 49-60. MR 3970229, 10.1007/978-3-030-25147-5_4
Reference: [6] Fisher, N. I.: Smoothing a sample of circular data.J. Struct. Geol. 11 (1989), 775-778. 10.1016/0191-8141(89)90012-6
Reference: [7] Ghosh, A. K., Chaudhuri, P.: On maximum depth and related classifiers.Scand. J. Stat. 32 (2005), 327-350. Zbl 1089.62075, MR 2188677, 10.1111/j.1467-9469.2005.00423.x
Reference: [8] Hubert, M., Rousseeuw, P., Segaert, P.: Multivariate and functional classification using depth and distance.Adv. Data Anal. Classif., ADAC 11 (2017), 445-466. Zbl 1414.62247, MR 3688976, 10.1007/s11634-016-0269-3
Reference: [9] James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: With applications in R.Springer Texts in Statistics 103. Springer, New York (2013). Zbl 1281.62147, MR 3100153, 10.1007/978-1-4614-7138-7
Reference: [10] Kirschstein, T., Liebscher, S., Pandolfo, G., Porzio, G. C., Ragozini, G.: On finite-sample robustness of directional location estimators.Comput. Stat. Data Anal. 133 (2019), 53-75. Zbl 07027245, MR 3926466, 10.1016/j.csda.2018.08.028
Reference: [11] Klecha, T., Kosiorowski, D., Mielczarek, D., Rydlewski, J. P.: New proposals of a stress measure in a capital and its robust estimator.Available at https://arxiv.org/abs/1802.03756 (2018), 24 pages.
Reference: [12] Kosiorowski, D.: About phase transitions in Kendall's shape space.Acta Univ. Lodz., Folia Oeconomica 206 (2007), 137-155.
Reference: [13] Leong, P., Carlile, S.: Methods for spherical data analysis and visualization.J. Neurosci. Methods 80 (1998), 191-200. 10.1016/S0165-0270(97)00201-X
Reference: [14] Ley, C., Sabbah, C., Verdebout, T.: A new concept of quantiles for directional data and the angular Mahalanobis depth.Electron. J. Stat. 8 (2014), 795-816. Zbl 1349.62197, MR 3217789, 10.1214/14-EJS904
Reference: [15] Liu, R. Y.: On a notion of data depth based on random simplices.Ann. Stat. 18 (1990), 405-414. Zbl 0701.62063, MR 1041400, 10.1214/aos/1176347507
Reference: [16] Liu, R. Y., Singh, K.: Ordering directional data: Concepts of data depth on circles and spheres.Ann. Stat. 20 (1992), 1468-1484. Zbl 0766.62027, MR 1186260, 10.1214/aos/1176348779
Reference: [17] Makinde, O. S., Fasoranbaku, O. A.: On maximum depth classifiers: Depth distribution approach.J. Appl. Stat. 45 (2018), 1106-1117. MR 3774534, 10.1080/02664763.2017.1342783
Reference: [18] Mardia, K. V., Jupp, P. E.: Directional Statistics.Wiley Series in Probability and Statistics. John Wiley & Sons, Chichester (2000). Zbl 0935.62065, MR 1828667, 10.1002/9780470316979
Reference: [19] Paindaveine, D., Verdebout, T.: Optimal rank-based tests for the location parameter of a rotationally symmetric distribution on the hypersphere.Mathematical Statistics and Limit Theorems Springer, Cham (2015), 249-269. Zbl 1320.62131, MR 3380740, 10.1007/978-3-319-12442-1_14
Reference: [20] Pandolfo, G., D'Ambrosio, A., Porzio, G. C.: A note on depth-based classification of circular data.Electron. J. Appl. Stat. Anal. 11 (2018), 447-462. MR 3887392, 10.1285/i20705948v11n2p447
Reference: [21] Pandolfo, G., Paindaveine, D., Porzio, G. C.: Distance-based depths for directional data.Can. J. Stat. 46 (2018), 593-609. Zbl 07193349, MR 3902616, 10.1002/cjs.11479
Reference: [22] Saw, J. G.: A family of distributions on the $m$-sphere and some hypothesis tests.Biometrika 65 (1978), 69-73. Zbl 0379.62035, MR 0497510, 10.1093/biomet/65.1.69
Reference: [23] Small, C. G.: Measures of centrality for multivariate and directional distributions.Can. J. Stat. 15 (1987), 31-39. Zbl 0622.62054, MR 0887986, 10.2307/3314859
Reference: [24] Tukey, J. W.: Mathematics and the picturing of data.Proceedings of the International Congress of Mathematicians Canad. Math. Congress, Montreal (1975), 523-531. Zbl 0347.62002, MR 0426989
Reference: [25] Vencálek, O.: Depth-based classification for multivariate data.Austrian J. Stat. 46 (2017), 117-128. 10.17713/ajs.v46i3-4.677
.

Files

Files Size Format View
AplMat_65-2020-3_9.pdf 306.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo