Title:
|
Existence theorems for nonlinear differential equations having trichotomy in Banach spaces (English) |
Author:
|
Gomaa, Adel Mahmoud |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
339-365 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation $$ \dot {x}(t)=\mathcal {L}( t)x(t)+f(t,x(t)),\quad t\in \mathbb {R}\leqno {\rm (P)} $$ where $\{\mathcal {L}(t)\colon t\in \mathbb {R}\}$ is a family of linear operators from a Banach space $E$ into itself and $f\colon \mathbb {R}\times E\to E$. By $L(E)$ we denote the space of linear operators from $E$ into itself. Furthermore, for $a<b$ and $d>0$, we let $C([-d,0],E)$ be the Banach space of continuous functions from $[-d,0]$ into $E$ and $f^{d}\colon [a,b]\times C([-d,0],E)\rightarrow E$. Let $\widehat {\mathcal {L}}\colon [a,b]\to L(E)$ be a strongly measurable and Bochner integrable operator on $[a,b]$ and for $t\in [a,b]$ define $\tau _{t}x(s)=x(t+s)$ for each $s \in [-d,0]$. We prove that, under certain conditions, the differential equation with delay $$ \dot {x}(t)=\widehat {\mathcal {L}}(t)x(t)+f^{d}(t,\tau _{t}x)\quad \text {if }t\in [a,b],\leqno {\rm (Q)} $$ has at least one weak solution and, under suitable assumptions, the differential equation (Q) has a solution. Next, under a generalization of the compactness assumptions, we show that the problem (Q) has a solution too. (English) |
Keyword:
|
nonlinear differential equation |
Keyword:
|
trichotomy |
Keyword:
|
existence theorem |
MSC:
|
34D09 |
MSC:
|
35F31 |
idZBL:
|
Zbl 06738523 |
idMR:
|
MR3661045 |
DOI:
|
10.21136/CMJ.2017.0592-15 |
. |
Date available:
|
2017-06-01T14:26:39Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146760 |
. |
Reference:
|
[1] Banaś, J., Goebel, K.: Measure of Noncompactness in Banach Spaces.Lecture Notes in Pure Mathematics 60 Marcel Dekker, New York (1980). Zbl 0441.47056, MR 0591679 |
Reference:
|
[2] Boudourides, M. A.: An existence theorem for ordinary differential equations in Banach spaces.Bull. Aust. Math. Soc. 22 (1980), 457-463. Zbl 0442.34057, MR 0601651, 10.1017/S0004972700006766 |
Reference:
|
[3] Caraballo, T., Morillas, F., Valero, J.: On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems.Discrete Contin. Dyn. Syst. 34 (2014), 51-77. Zbl 1323.34087, MR 3072985, 10.3934/dcds.2014.34.51 |
Reference:
|
[4] Cichoń, M.: On bounded weak solutions of a nonlinear differential equation in Banach space.Funct. Approximatio Comment. Math. 21 (1992), 27-35. Zbl 0777.34041, MR 1296988 |
Reference:
|
[5] Cichoń, M.: A point of view on measures of noncompactness.Demonstr. Math. 26 (1993), 767-777. Zbl 0809.47049, MR 1265840 |
Reference:
|
[6] Cichoń, M.: On measures of weak noncompactness.Publ. Math. 45 (1994), 93-102. Zbl 0829.47042, MR 1291804 |
Reference:
|
[7] Cichoń, M.: Trichotomy and bounded solutions of nonlinear differential equations.Math. Bohem. 119 (1994), 275-284. Zbl 0819.34040, MR 1305530 |
Reference:
|
[8] Cichoń, M.: Differential inclusions and abstract control problems.Bull. Aust. Math. Soc. 53 (1996), 109-122. Zbl 0849.34016, MR 1371918, 10.1017/S0004972700016774 |
Reference:
|
[9] Cramer, E., Lakshmikantham, V., Mitchell, A. R.: On the existence of weak solutions of differential equations in nonreflexive Banach spaces.Nonlinear Anal., Theory, Methods Appl. 2 (1978), 169-177. Zbl 0379.34041, MR 0512280, 10.1016/0362-546X(78)90063-9 |
Reference:
|
[10] Dawidowski, M., Rzepecki, B.: On bounded solutions of nonlinear differential equations in Banach spaces.Demonstr. Math. 18 (1985), 91-102. Zbl 0593.34062, MR 0816022 |
Reference:
|
[11] Elaydi, S., Hajek, O.: Exponential trichotomy of differential systems.J. Math. Anal. Appl. 129 (1988), 362-374. Zbl 0651.34052, MR 0924294, 10.1016/0022-247X(88)90255-7 |
Reference:
|
[12] Elaydi, S., Hájek, O.: Exponential dichotomy and trichotomy of nonlinear diffrerential equations.Differ. Integral Equ. 3 (1990), 1201-1224. Zbl 0722.34053, MR 1073067 |
Reference:
|
[13] Gohberg, I. T., Goldenstein, L. S., Markus, A. S.: Investigation of some properties of bounded linear operators in connection with their $q$-norms.Uchen. Zap. Kishinevskogo Univ. 29 (1957), 29-36 Russian. |
Reference:
|
[14] Gomaa, A. M.: Weak and strong solutions for differential equations in Banach spaces.Chaos Solitons Fractals 18 (2003), 687-692. Zbl 1058.34077, MR 1984052, 10.1016/S0960-0779(02)00643-4 |
Reference:
|
[15] Gomaa, A. M.: Existence solutions for differential equations with delay in Banach spaces.Proc. Math. Phys. Soc. Egypt 84 (2006), 1-12. MR 2349563 |
Reference:
|
[16] Gomaa, A. M.: On theorems for weak solutions of nonlinear differential equations with and without delay in Banach spaces.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 179-191. Zbl 1182.34080, MR 2377955 |
Reference:
|
[17] Gomaa, A. M.: Existence and topological properties of solution sets for differential inclusions with delay.Commentat. Math. 48 (2008), 45-58. Zbl 1179.34072, MR 2440748 |
Reference:
|
[18] Gomaa, A. M.: On bounded weak and pseudo-solutions of nonlinear differential equations having trichotomy with and without delay in Banach spaces.Int. J. Geom. Mathods Mod. Phys. 7 (2010), 357-366. Zbl 1214.34068, MR 2646768, 10.1142/S0219887810004336 |
Reference:
|
[19] Gomaa, A. M.: On bounded weak and strong solutions of non linear differential equations with and without delay in Banach spaces.Math. Scand. 112 (2013), 225-239. Zbl 1276.34063, MR 3073456, 10.7146/math.scand.a-15242 |
Reference:
|
[20] Hille, E., Phillips, R. S.: Functional Analysis and Semigroups.Colloquium Publications 31, American Mathematical Society, Providence (1957). Zbl 0078.10004, MR 0423094 |
Reference:
|
[21] Ibrahim, A.-G., Gomaa, A. M.: Strong and weak solutions for differential inclusions with moving constraints in Banach spaces.PU.M.A., Pure Math. Appl. 8 (1997), 53-65. Zbl 0910.34027, MR 1490000 |
Reference:
|
[22] Krzyśka, S., Kubiaczyk, I.: On bounded pseudo and weak solutions of a nonlinear differential equation in Banach spaces.Demonstr. Math. 32 (1999), 323-330. Zbl 0954.34050, MR 1710255 |
Reference:
|
[23] Kuratowski, K.: Sur les espaces complets.Fundamenta 15 (1930), 301-309 French \99999JFM99999 56.1124.04. MR 0028007 |
Reference:
|
[24] Lupa, N., Megan, M.: Generalized exponential trichotomies for abstract evolution operators on the real line.J. Funct. Spaces Appl. 2013 (2013), Article ID 409049, 8 pages. Zbl 06281050, MR 3111843, 10.1155/2013/409049 |
Reference:
|
[25] Makowiak, M.: On some bounded solutions to a nonlinear differential equation.Demonstr. Math. 30 (1997), 801-808. Zbl 0909.34049, MR 1617273, 10.1515/dema-1997-0411 |
Reference:
|
[26] Massera, J. L., Schäffer, J. J.: Linear Differential Equations and Function Spaces.Pure and Applied Mathematics 21, Academic Press, New York (1966). Zbl 0243.34107, MR 0212324 |
Reference:
|
[27] Megan, M., Stoica, C.: On uniform exponential trichotomy of evolution operators in Banach spaces.Integral Equations Oper. Theory 60 (2008), 499-506. Zbl 1151.34051, MR 2390441, 10.1007/s00020-008-1555-z |
Reference:
|
[28] Mitchell, A. R., Smith, C.: An existence theorem for weak solutions of differential equations in Banach spaces.Nonlinear Equations in Abstract Spaces Proc. Int. Symp., Arlington, 1977, Academic Press, New York (1978), 387-403. Zbl 0452.34054, MR 0502554, 10.1016/b978-0-12-434160-9.50028-x |
Reference:
|
[29] Olech, O.: On the existence and uniqueness of solutions of an ordinary differential equation in the case of Banach space.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 667-673. Zbl 0173.35303, MR 0147733 |
Reference:
|
[30] Papageorgiou, N. S.: Weak solutions of differential equations in Banach spaces.Bull. Aust. Math. Soc. 33 (1986), 407-418. Zbl 0578.34039, MR 837487, 10.1017/S0004972700003993 |
Reference:
|
[31] Popa, I.-L., Megan, M., Ceauşu, T.: On $h$-trichotomy of linear discrete-time systems in Banach spaces.Acta Univ. Apulensis, Math. Inform. 39 (2014), 329-339. Zbl 06521157, MR 3304423, 10.17114/j.aua.2014.39.28 |
Reference:
|
[32] Przeradzki, B.: The existence of bounded solutions for differential equations in Hilbert spaces.Ann. Pol. Math. 56 (1992), 103-121. Zbl 0805.47041, MR 1159982, 10.4064/ap-56-2-103-121 |
Reference:
|
[33] Sadovski\uı, B. N.: On a fixed-point principle.Funct. Anal. Appl. 1 (1967), 151-153 translation from Funkts. Anal. Prilozh. 1 1967 74-76. Zbl 0165.49102, MR 0211302 |
Reference:
|
[34] Sasu, A. L., Sasu, B.: A Zabczyk type method for the study of the exponential trichotomy of discrete dynamical systems.Appl. Math. Comput. 245 (2014), 447-461. Zbl 1335.39027, MR 3260730, 10.1016/j.amc.2014.07.108 |
Reference:
|
[35] Sasu, B., Sasu, A. L.: Exponential trichotomy and $p$-admissibility for evolution families on the real line.Math. Z. 253 (2006), 515-536. Zbl 1108.34047, MR 2221084, 10.1007/s00209-005-0920-8 |
Reference:
|
[36] Szep, A.: Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Stud. Sci. Math. Hung. 6 (1971), 197-203. Zbl 0238.34100, MR 0330688 |
Reference:
|
[37] Szufla, S.: On the existence of solutions of differential equations in Banach spaces.Bull. Acad. Pol. Sci., Sér. Sci. Math. 30 (1982), 507-515. Zbl 0532.34045, MR 0718727 |
. |