Previous |  Up |  Next

Article

Title: Picone's identity for a Finsler $p$-Laplacian and comparison of nonlinear elliptic equations (English)
Author: Jaroš, Jaroslav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 3
Year: 2014
Pages: 535-552
Summary lang: English
.
Category: math
.
Summary: In the paper we present an identity of the Picone type for a class of nonlinear differential operators of the second order involving an arbitrary norm $H$ in $\mathbb {R}^n$ which is continuously differentiable for $x \not = 0$ and such that $H^p$ is strictly convex for some $p > 1$. Two important special cases are the $p$-Laplacian and the so-called pseudo $p$-Laplacian. The identity is then used to establish a variety of comparison results concerning nonlinear degenerate elliptic equations which involve such operators. We also get criteria for the nonexistence of positive solutions in exterior domains for such equations by means of comparison with the equation exhibiting a kind of “anisotropic radial symmetry”. (English)
Keyword: Picone identity
Keyword: Finsler $p$-Laplacian
MSC: 35B05
MSC: 35B51
MSC: 35J62
MSC: 35J70
MSC: 35J92
idZBL: Zbl 06391469
idMR: MR3269372
DOI: 10.21136/MB.2014.143940
.
Date available: 2014-09-29T09:23:02Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143940
.
Reference: [1] Allegretto, W., Huang, Y. X.: A Picone's identity for the $p$-Laplacian and applications.Nonlinear Anal., Theory Methods Appl. 32 819-830 (1998). Zbl 0930.35053, MR 1618334
Reference: [2] Alvino, A., Ferone, V., Trombetti, G., Lions, P.-L.: Convex symmetrization and applications.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 275-293 (1997). Zbl 0877.35040, MR 1441395, 10.1016/S0294-1449(97)80147-3
Reference: [3] Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry.Hokkaido Math. J. 25 537-566 (1996). Zbl 0873.53011, MR 1416006, 10.14492/hokmj/1351516749
Reference: [4] Belloni, M., Ferone, V., Kawohl, B.: Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators.Z. Angew. Math. Phys. 54 771-783 (2003). Zbl 1099.35509, MR 2019179, 10.1007/s00033-003-3209-y
Reference: [5] Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems.NoDEA, Nonlinear Differ. Equ. Appl. 2 553-572 (1995). Zbl 0840.35035, MR 1356874, 10.1007/BF01210623
Reference: [6] Bognár, G., Došlý, O.: The application of Picone-type identity for some nonlinear elliptic differential equations.Acta Math. Univ. Comen., New Ser. 72 45-57 (2003). Zbl 1106.35013, MR 2020577
Reference: [7] Cianchi, A., Salani, P.: Overdetermined anisotropic elliptic problems.Math. Ann. 345 859-881 (2009). Zbl 1179.35107, MR 2545870, 10.1007/s00208-009-0386-9
Reference: [8] Pietra, F. Della, Gavitone, N.: Anisotropic elliptic problems involving Hardy-type potentials.J. Math. Anal. Appl. 397 800-813 (2013). MR 2979615, 10.1016/j.jmaa.2012.08.008
Reference: [9] Došlý, O.: The Picone identity for a class of partial differential equations.Math. Bohem. 127 581-589 (2002). Zbl 1074.35521, MR 1942643
Reference: [10] Došlý, O., Maří{k}, R.: Nonexistence of positive solutions of PDE's with $p$-Laplacian.Acta Math. Hung. 90 89-107 (2001). Zbl 1062.35022, MR 1910321, 10.1023/A:1006739909182
Reference: [11] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland Mathematics Studies 202 Elsevier, Amsterdam (2005). Zbl 1090.34001, MR 2158903
Reference: [12] Dunninger, D. R.: A Sturm comparison theorem for some degenerate quasilinear elliptic operators.Boll. Unione Mat. Ital., VII. Ser., A 9 117-121 (1995). Zbl 0834.35011, MR 1324611
Reference: [13] Ferone, V., Kawohl, B.: Remarks on a Finsler-Laplacian.Proc. Am. Math. Soc. 137 247-253 (2009). Zbl 1161.35017, MR 2439447, 10.1090/S0002-9939-08-09554-3
Reference: [14] Kusano, T., Jaroš, J., Yoshida, N.: A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 40 381-395 (2000). Zbl 0954.35018, MR 1768900, 10.1016/S0362-546X(00)85023-3
Reference: [15] Kusano, T., Naito, Y.: Oscillation and nonoscillation criteria for second order quasilinear differential equations.Acta Math. Hung. 76 81-99 (1997). Zbl 0906.34024, MR 1459772, 10.1007/BF02907054
Reference: [16] Kusano, T., Naito, Y., Ogata, A.: Strong oscillation and nonoscillation of quasilinear differential equations of second order.Differ. Equ. Dyn. Syst. 2 1-10 (1994). MR 1386034
Reference: [17] Picone, M.: Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo ordine.Rom. Acc. L. Rend. (5) 20 213-219 Italian (1911).
Reference: [18] Rockafellar, R. T.: Convex Analysis. Reprint of the 1970 original.Princeton Landmarks in Mathematics Princeton University Press, Princeton (1997). MR 1451876
Reference: [19] Swanson, C. A.: Picone's identity.Rend. Mat., VI. Ser. 8 373-397 (1975). Zbl 0327.34028, MR 0402188
Reference: [20] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Mathematics in Science and Engineering 48 Academic Press, New York (1968). Zbl 0191.09904, MR 0463570
Reference: [21] Wang, G., Xia, C.: An optimal anisotropic Poincaré inequality for convex domains.Pac. J. Math. 258 305-326 (2012). Zbl 1266.35120, MR 2981956, 10.2140/pjm.2012.258.305
Reference: [22] Wang, G., Xia, C.: Blow-up analysis of a Finsler-Liouville equation in two dimensions.J. Differ. Equations 252 1668-1700 (2012). Zbl 1233.35053, MR 2853556, 10.1016/j.jde.2011.08.001
Reference: [23] Wang, G., Xia, C.: A characterization of the Wulff shape by an overdetermined anisotropic PDE.Arch. Ration. Mech. Anal. 199 99-115 (2011). Zbl 1232.35103, MR 2754338, 10.1007/s00205-010-0323-9
Reference: [24] Yoshida, N.: Oscillation Theory of Partial Differential Equations.World Scientific, Hackensack (2008). Zbl 1154.35001, MR 2485076
.

Files

Files Size Format View
MathBohem_139-2014-3_6.pdf 291.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo