Previous |  Up |  Next

Article

Title: Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions (English)
Author: Ahmad, Bashir
Author: Ntouyas, Sotiris
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 3
Year: 2014
Pages: 451-465
Summary lang: English
.
Category: math
.
Summary: In this paper, we discuss the existence of solutions for a boundary value problem of fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Our results include the cases when the multivalued map involved in the problem is (i) convex valued, (ii) lower semicontinuous with nonempty closed and decomposable values and (iii) nonconvex valued. In case (i) we apply a nonlinear alternative of Leray-Schauder type, in the second case we combine the nonlinear alternative of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan and Colombo, while in the third case we use a fixed point theorem for multivalued contractions due to Covitz and Nadler. (English)
Keyword: differential inclusion
Keyword: nonlocal condition
Keyword: integral boundary condition
Keyword: Leray Schauder alternative
Keyword: fixed point theorem
MSC: 34A08
MSC: 34A60
MSC: 34B10
idZBL: Zbl 06391465
idMR: MR3269368
DOI: 10.21136/MB.2014.143936
.
Date available: 2014-09-29T09:10:07Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143936
.
Reference: [1] Agarwal, R. P., Ahmad, B.: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions.Comput. Math. Appl. 62 (2011), 1200-1214. Zbl 1228.34009, MR 2824708, 10.1016/j.camwa.2011.03.001
Reference: [2] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions.Acta. Appl. Math. 109 (2010), 973-1033. Zbl 1198.26004, MR 2596185, 10.1007/s10440-008-9356-6
Reference: [3] Ahmad, B., Ntouyas, S. K.: Some existence results for boundary value problems for fractional differential inclusions with non-separated boundary conditions.Electron. J. Qual. Theory Differ. Equ. (electronic only) 2010 Paper no. 71, 17 pages (2010). MR 2740676
Reference: [4] Ahmad, B.: Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations.Appl. Math. Lett. 23 (2010), 390-394. Zbl 1198.34007, MR 2594849, 10.1016/j.aml.2009.11.004
Reference: [5] Ahmad, B., Ntouyas, S. K., Assolami, A.: Caputo type fractional differential equations with nonlocal Riemann-Liouville integral boundary conditions.J. Appl. Math. Comput. 41 (2013), 339-350. Zbl 1300.34013, MR 3017125, 10.1007/s12190-012-0610-8
Reference: [6] Ahmad, B., Alsaedi, A., Alghamdi, B. S.: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions.Nonlinear Anal., Real World Appl. 9 (2008), 1727-1740. Zbl 1154.34311, MR 2422576
Reference: [7] Ahmad, B., Nieto, J. J.: Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations.Abstr. Appl. Anal. 2009 (2009), ID 494720, 9 pages. Zbl 1186.34009, MR 2516016
Reference: [8] Ahmad, B., Nieto, J. J.: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions.Bound. Value Probl. 2009 ID 708576, 11 pages. Zbl 1167.45003, MR 2525567
Reference: [9] Ahmad, B., Nieto, J. J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions.Comput. Math. Appl. 58 (2009), 1838-1843. Zbl 1205.34003, MR 2557562, 10.1016/j.camwa.2009.07.091
Reference: [10] Ahmad, B., Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order.Appl. Math. Comput. 217 (2010), 480-487. Zbl 1207.45014, MR 2678559, 10.1016/j.amc.2010.05.080
Reference: [11] Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 916-924. Zbl 1187.34026, MR 2579357, 10.1016/j.na.2009.07.033
Reference: [12] Balachandran, K., Trujillo, J. J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4587-4593. Zbl 1196.34007, MR 2639206, 10.1016/j.na.2010.02.035
Reference: [13] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values.Stud. Math. 90 (1988), 69-86. Zbl 0677.54013, MR 0947921, 10.4064/sm-90-1-69-86
Reference: [14] Boucherif, A.: Second-order boundary value problems with integral boundary conditions.Nonlinear Anal., Theory Methods Appl. 70 (2009), 364-371. Zbl 1169.34310, MR 2468243, 10.1016/j.na.2007.12.007
Reference: [15] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions.Lecture Notes in Mathematics 580 Springer, Berlin (1977). Zbl 0346.46038, MR 0467310, 10.1007/BFb0087688
Reference: [16] Covitz, H., Jr., S. B. Nadler \rm: Multivalued contraction mappings in generalized metric spaces.Isr. J. Math. 8 (1970), 5-11. MR 0263062, 10.1007/BF02771543
Reference: [17] Deimling, K.: Multivalued Differential Equations.De Gruyter Studies in Nonlinear Analysis and Applications 1 Walter de Gruyter, Berlin (1992). Zbl 0820.34009, MR 1189795
Reference: [18] Granas, A., Dugundji, J.: Fixed Point Theory.Springer Monographs in Mathematics Springer, New York (2003). Zbl 1025.47002, MR 1987179
Reference: [19] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Volume I: Theory.Mathematics and its Applications 419 Kluwer Academic Publishers, Dordrecht (1997). Zbl 0887.47001, MR 1485775
Reference: [20] Kisielewicz, M.: Differential Inclusions and Optimal Control.Mathematics and Its Appplications, East European Series 44 Kluwer Academic Publishers, Dordrecht; PWN- Polish Scientific Publishers, Warszawa (1991). MR 1135796
Reference: [21] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073
Reference: [22] Lasota, A., Opial, Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 781-786. Zbl 0151.10703, MR 0196178
Reference: [23] Podlubny, I.: Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022
Reference: [24] Sabatier, J., Agrawal, O. P., (eds.), J. A. Machado: Advances in Fractional Calculus.Theoretical Developments and Applications in Physics and Engineering Springer, Dordrecht (2007). Zbl 1116.00014, MR 2432163
Reference: [25] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Transl. from the Russian.Gordon and Breach, New York (1993). Zbl 0818.26003, MR 1347689
.

Files

Files Size Format View
MathBohem_139-2014-3_2.pdf 286.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo