Previous |  Up |  Next

Article

Title: On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient (English)
Author: Nguyen Huy, Tuan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 4
Year: 2014
Pages: 453-472
Summary lang: English
.
Category: math
.
Summary: In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution. (English)
Keyword: nonlinear heat problem
Keyword: ill-posed problem
Keyword: Fourier transform
Keyword: time-dependent coefficient
MSC: 35K05
MSC: 35K15
MSC: 35K58
MSC: 35K99
MSC: 35R30
MSC: 47J06
idZBL: Zbl 06362238
idMR: MR3233554
DOI: 10.1007/s10492-014-0066-2
.
Date available: 2014-07-14T09:09:54Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143874
.
Reference: [1] Cheng, W., L.-Fu, C.: A spectral method for an axisymmetric backward heat equation.Inverse Probl. Sci. Eng. 17 (2009), 1085-1093. MR 2573817, 10.1080/17415970903063193
Reference: [2] Clark, G. W., Oppenheimer, S. F.: Quasireversibility methods for non-well-posed problems.Electron. J. Differ. Equ. 1994 (1994), 1-9 (electronic). Zbl 0811.35157, MR 1302574
Reference: [3] Denche, M., Bessila, K.: A modified quasi-boundary value method for ill-posed problems.J. Math. Anal. Appl. 301 (2005), 419-426. Zbl 1084.34536, MR 2105682, 10.1016/j.jmaa.2004.08.001
Reference: [4] Fu, C.-L., Xiong, X.-T., Qian, Z.: Fourier regularization for a backward heat equation.J. Math. Anal. Appl. 331 (2007), 472-480. Zbl 1146.35420, MR 2306017, 10.1016/j.jmaa.2006.08.040
Reference: [5] Lattès, R., Lions, J.-L.: Méthode de Quasi-Réversibilité et Applications.French Travaux et Recherches Mathématiques 15 Dunod, Paris (1967). Zbl 0159.20803, MR 0232549
Reference: [6] Liu, C.-S.: Group preserving scheme for backward heat conduction problems.Int. J. Heat Mass Transfer 47 (2004), 2567-2576. Zbl 1100.80005, 10.1016/j.ijheatmasstransfer.2003.12.019
Reference: [7] Payne, L.: Improperly Posed Problems in Partial Differential Equations.CBMS-NSF Regional Conference Series in Applied Mathematics 22 SIAM, Philadelphia (1975). Zbl 0302.35003, MR 0463736
Reference: [8] Qian, Z., Fu, C.-L., Shi, R.: A modified method for a backward heat conduction problem.Appl. Math. Comput. 185 (2007), 564-573. Zbl 1112.65090, MR 2297827, 10.1016/j.amc.2006.07.055
Reference: [9] Quan, P. H., Trong, D. D.: A nonlinearly backward heat problem: uniqueness, regularization and error estimate.Appl. Anal. 85 (2006), 641-657. Zbl 1099.35045, MR 2232412, 10.1080/00036810500474671
Reference: [10] Quan, P. H., Trong, D. D., Triet, L. M., Tuan, N. H.: A modified quasi-boundary value method for regularizing of a backward problem with time-dependent coefficient.Inverse Probl. Sci. Eng. 19 (2011), 409-423. Zbl 1227.65089, MR 2795221, 10.1080/17415977.2011.552111
Reference: [11] Seidman, T. I.: Optimal filtering for the backward heat equation.SIAM J. Numer. Anal. 33 (1996), 162-170. Zbl 0851.65066, MR 1377249, 10.1137/0733010
Reference: [12] Showalter, R. E.: The final value problem for evolution equations.J. Math. Anal. Appl. 47 (1974), 563-572. Zbl 0296.34059, MR 0352644, 10.1016/0022-247X(74)90008-0
Reference: [13] Tautenhahn, U., Schröter, T.: On optimal regularization methods for the backward heat equation.Z. Anal. Anwend. 15 (1996), 475-493. MR 1394439, 10.4171/ZAA/711
Reference: [14] Trong, D. D., Tuan, N. H.: Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4167-4176. Zbl 1172.35517, MR 2536322, 10.1016/j.na.2009.02.092
Reference: [15] Wang, J. R.: Shannon wavelet regularization methods for a backward heat equation.J. Comput. Appl. Math. 235 (2011), 3079-3085. Zbl 1233.65068, MR 2771288, 10.1016/j.cam.2011.01.001
Reference: [16] z, B. Yıldı, Yetişkin, H., Sever, A.: A stability estimate on the regularized solution of the backward heat equation.Appl. Math. Comput. 135 (2003), 561-567. MR 1937275, 10.1016/S0096-3003(02)00069-3
.

Files

Files Size Format View
AplMat_59-2014-4_6.pdf 300.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo