Title:
|
On an initial inverse problem in nonlinear heat equation associated with time-dependent coefficient (English) |
Author:
|
Nguyen Huy, Tuan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
59 |
Issue:
|
4 |
Year:
|
2014 |
Pages:
|
453-472 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution. (English) |
Keyword:
|
nonlinear heat problem |
Keyword:
|
ill-posed problem |
Keyword:
|
Fourier transform |
Keyword:
|
time-dependent coefficient |
MSC:
|
35K05 |
MSC:
|
35K15 |
MSC:
|
35K58 |
MSC:
|
35K99 |
MSC:
|
35R30 |
MSC:
|
47J06 |
idZBL:
|
Zbl 06362238 |
idMR:
|
MR3233554 |
DOI:
|
10.1007/s10492-014-0066-2 |
. |
Date available:
|
2014-07-14T09:09:54Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143874 |
. |
Reference:
|
[1] Cheng, W., L.-Fu, C.: A spectral method for an axisymmetric backward heat equation.Inverse Probl. Sci. Eng. 17 (2009), 1085-1093. MR 2573817, 10.1080/17415970903063193 |
Reference:
|
[2] Clark, G. W., Oppenheimer, S. F.: Quasireversibility methods for non-well-posed problems.Electron. J. Differ. Equ. 1994 (1994), 1-9 (electronic). Zbl 0811.35157, MR 1302574 |
Reference:
|
[3] Denche, M., Bessila, K.: A modified quasi-boundary value method for ill-posed problems.J. Math. Anal. Appl. 301 (2005), 419-426. Zbl 1084.34536, MR 2105682, 10.1016/j.jmaa.2004.08.001 |
Reference:
|
[4] Fu, C.-L., Xiong, X.-T., Qian, Z.: Fourier regularization for a backward heat equation.J. Math. Anal. Appl. 331 (2007), 472-480. Zbl 1146.35420, MR 2306017, 10.1016/j.jmaa.2006.08.040 |
Reference:
|
[5] Lattès, R., Lions, J.-L.: Méthode de Quasi-Réversibilité et Applications.French Travaux et Recherches Mathématiques 15 Dunod, Paris (1967). Zbl 0159.20803, MR 0232549 |
Reference:
|
[6] Liu, C.-S.: Group preserving scheme for backward heat conduction problems.Int. J. Heat Mass Transfer 47 (2004), 2567-2576. Zbl 1100.80005, 10.1016/j.ijheatmasstransfer.2003.12.019 |
Reference:
|
[7] Payne, L.: Improperly Posed Problems in Partial Differential Equations.CBMS-NSF Regional Conference Series in Applied Mathematics 22 SIAM, Philadelphia (1975). Zbl 0302.35003, MR 0463736 |
Reference:
|
[8] Qian, Z., Fu, C.-L., Shi, R.: A modified method for a backward heat conduction problem.Appl. Math. Comput. 185 (2007), 564-573. Zbl 1112.65090, MR 2297827, 10.1016/j.amc.2006.07.055 |
Reference:
|
[9] Quan, P. H., Trong, D. D.: A nonlinearly backward heat problem: uniqueness, regularization and error estimate.Appl. Anal. 85 (2006), 641-657. Zbl 1099.35045, MR 2232412, 10.1080/00036810500474671 |
Reference:
|
[10] Quan, P. H., Trong, D. D., Triet, L. M., Tuan, N. H.: A modified quasi-boundary value method for regularizing of a backward problem with time-dependent coefficient.Inverse Probl. Sci. Eng. 19 (2011), 409-423. Zbl 1227.65089, MR 2795221, 10.1080/17415977.2011.552111 |
Reference:
|
[11] Seidman, T. I.: Optimal filtering for the backward heat equation.SIAM J. Numer. Anal. 33 (1996), 162-170. Zbl 0851.65066, MR 1377249, 10.1137/0733010 |
Reference:
|
[12] Showalter, R. E.: The final value problem for evolution equations.J. Math. Anal. Appl. 47 (1974), 563-572. Zbl 0296.34059, MR 0352644, 10.1016/0022-247X(74)90008-0 |
Reference:
|
[13] Tautenhahn, U., Schröter, T.: On optimal regularization methods for the backward heat equation.Z. Anal. Anwend. 15 (1996), 475-493. MR 1394439, 10.4171/ZAA/711 |
Reference:
|
[14] Trong, D. D., Tuan, N. H.: Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4167-4176. Zbl 1172.35517, MR 2536322, 10.1016/j.na.2009.02.092 |
Reference:
|
[15] Wang, J. R.: Shannon wavelet regularization methods for a backward heat equation.J. Comput. Appl. Math. 235 (2011), 3079-3085. Zbl 1233.65068, MR 2771288, 10.1016/j.cam.2011.01.001 |
Reference:
|
[16] z, B. Yıldı, Yetişkin, H., Sever, A.: A stability estimate on the regularized solution of the backward heat equation.Appl. Math. Comput. 135 (2003), 561-567. MR 1937275, 10.1016/S0096-3003(02)00069-3 |
. |