Previous |  Up |  Next

Article

Title: Dynamics of systems with Preisach memory near equilibria (English)
Author: McCarthy, Stephen
Author: Rachinskii, Dmitrii
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 1
Year: 2014
Pages: 39-73
Summary lang: English
.
Category: math
.
Summary: We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear as a component of the recently proposed models of population dynamics. We study dynamics of such systems near an equilibrium point. In particular, we show and examine a similarity in the behaviour of trajectories between the system with the Preisach memory operator and a planar slow-fast ordinary differential equation. The nonsmooth Preisach operator introduces a singularity into the system. Furthermore, we classify the robust equilibrium points according to their stability properties. Conditions for stability, instability and partial stability are presented. A robust partially stable point simultaneously attracts many trajectories and repels many trajectories (a behaviour which is not generic for smooth ordinary differential equations). We discuss implications of such local dynamics for the excitability properties of the system. (English)
Keyword: return-point memory
Keyword: Preisach operator
Keyword: oscillator with memory
Keyword: hysteresis
Keyword: operator-differential equation
Keyword: stability of equilibrium
Keyword: partial stability
Keyword: slow-fast system
Keyword: switching line
Keyword: excitability
MSC: 34C55
MSC: 47J40
MSC: 74N30
MSC: 82D40
idZBL: Zbl 06362242
idMR: MR3231429
DOI: 10.21136/MB.2014.143636
.
Date available: 2014-03-20T08:29:57Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143636
.
Reference: [1] Appelbe, B., Rachinskii, D., Zhezherun, A.: Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis.Physica B 403 (2008), 301-304. 10.1016/j.physb.2007.08.034
Reference: [2] Appelbe, B., Flynn, D., McNamara, H., O'Kane, J. P., Pimenov, A., Pokrovskii, A., Rachinskii, D., Zhezherun, A.: Rate-independent hysteresis in terrestrial hydrology.IEEE Control Syst. Mag. 29 (2009), 44-69. 10.1109/MCS.2008.930923
Reference: [3] Balanov, Z., Krawcewicz, W., Rachinskii, D., Zhezherun, A.: Hopf bifurcation in symmetric networks of coupled oscillators with hysteresis.J. Dyn. Differ. Equations 24 (2012), 713-759. Zbl 1264.34093, MR 3000601, 10.1007/s10884-012-9271-4
Reference: [4] Bessoud, A.-L., Stefanelli, U.: Magnetic shape memory alloys: three-dimensional modeling and analysis.Math. Models Methods Appl. Sci. 21 (2011), 1043-1069. MR 2804528, 10.1142/S0218202511005246
Reference: [5] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121 Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [6] Brokate, M., Pokrovskii, A. V., Rachinskii, D., Rasskazov, O.: Differential equations with hysteresis via a canonical example.G. Bertotti et al. The Science of Hysteresis. Vol. I Mathematical modeling and applications Elsevier, Academic Press, Amsterdam (2006), 125-291. Zbl 1142.34026
Reference: [7] Brokate, M., Pokrovskii, A., Rachinskii, D.: Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis.J. Math. Anal. Appl. 319 (2006), 94-109. Zbl 1111.34035, MR 2217849, 10.1016/j.jmaa.2006.02.060
Reference: [8] Brokate, M., MacCarthy, S., Pimenov, A., Pokrovskii, A., Rachinskii, D.: Modelling energy dissipation due to soil-moisture hysteresis.Environ Model Assess 16 (2011), 313-333. 10.1007/s10666-011-9258-2
Reference: [9] Cagnol, J., Miara, B., Mielke, A., Stavroulakis, G.: State of the Art, Trends, and Directions in Smart Systems. www.wias-berlin.de/people/mielke/papers/stateoftheart.pdf..
Reference: [10] Cellai, D., Lawlor, A., Dawson, K. A., Gleeson, J. P.: Tricritical point in heterogeneous k-core percolation.Phys. Rev. Lett. 107 (2011), no. 175703, 5 pages. 10.1103/PhysRevLett.107.175703
Reference: [11] Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D.: A new paradigm for modelling hysteresis in macroeconomic flows.Physica B 403 (2008), 231-236. 10.1016/j.physb.2007.08.017
Reference: [12] Cross, R., McNamara, H., Pokrovskii, A.: Modelling macroeconomic flows related to large ensembles of elementary exchange operations.Physica B 403 (2008), 451-455. 10.1016/j.physb.2007.08.073
Reference: [13] Cross, R., McNamara, H., Pokrovskii, A.: Memory of recessions.Strathclyde discussion papers in economics no. 10-09, 26 pages (2010).
Reference: [14] Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A.: Hysteresis in the fundamentals of macroeconomics.Strathclyde discussion papers in economics no. 10-08, 35 pages (2010).
Reference: [15] Cross, R.: On the foundations of hysteresis in economic systems.Economics and Philosophy 9 (1993), 53-74. 10.1017/S0266267100005113
Reference: [16] Cross, R., Grinfeld, M., Lamba, H.: Hysteresis and economics.IEEE Control Syst. Mag. 29 (2009), 30-43. MR 2477927, 10.1109/MCS.2008.930445
Reference: [17] Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A.: Hysteresis and post Walrasian economics.Discrete Contin. Dyn. Syst., Ser. B 18 (2013), 377-401. Zbl 1268.91121, MR 2999082, 10.3934/dcdsb.2013.18.377
Reference: [18] Dahmen, K., Ben-Zion, Y.: Jerky motion in slowly driven magnetic and earthquake fault systems, physics of.C. Marchetti, R. A. Meyers Encyclopedia of Complexity and Systems Science Springer (2009), 5021-5037.
Reference: [19] Davino, D., Giustiniani, A., Visone, C.: Compensation and control of two-inputs systems with hysteresis.J. Phys.: Conf. Ser. 268 (2011), no. 12005, 16 pages.
Reference: [20] Diamond, P., Rachinskii, D., Yumagulov, M.: Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity.Nonlinear Anal., Theory Methods Appl. 42 (2000), 1017-1031. Zbl 0963.34034, MR 1780452
Reference: [21] Diamond, P., Kuznetsov, N., Rachinskii, D.: On the Hopf bifurcation in control systems with a bounded nonlinearity asymptotically homogeneous at infinity.J. Differ. Equations 175 (2001), 1-26. Zbl 0984.34029, MR 1849221, 10.1006/jdeq.2000.3916
Reference: [22] Ekanayake, D., Iyer, R. V.: Asymptotic behavior of a low dimensional model for magnetostriction for periodic inputs.Physica B: Physics of Condensed Matter 403 (2008), 257-260. 10.1016/j.physb.2007.08.023
Reference: [23] Eleuteri, M., Lussardi, L., Stefanelli, U.: A rate-independent model for permanent inelastic effects in shape memory materials.Netw. Heterog. Media (electronic only) 6 (2011), 145-165. Zbl 1263.74016, MR 2777014, 10.3934/nhm.2011.6.145
Reference: [24] Eleuteri, M., Kopfová, J., Krejčí, P.: Magnetohydrodynamic flow with hysteresis.SIAM J. Math. Anal. 41 (2009), 435-464. MR 2507458, 10.1137/080718383
Reference: [25] Flynn, D., McNamara, H., O'Kane, J. P., Pokrovskii, A.: Application of the Preisach model to soil-moisture hysteresis.G. Bertottiand, I. D. Mayergoyz The Science of Hysteresis Vol. III Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006), 689-744. Zbl 1136.76048, 10.1016/B978-012480874-4/50025-7
Reference: [26] Flynn, D., Zhezherun, A., Pokrovskii, A., O'Kane, J. P.: Modeling discontinuous flow through porous media using ODEs with Preisach operator.Physica B 403 (2008), 440-442. 10.1016/j.physb.2007.08.070
Reference: [27] Gleeson, J. P.: High-accuracy approximation of binary-state dynamics on networks.Phys. Rev. Lett. 107 (2011), no. 068701, 9 pages. 10.1103/PhysRevLett.107.068701
Reference: [28] Göcke, M.: Various concepts of hysteresis applied in economics.Journal of Economic Surveys 16 (2002), 167-188. 10.1111/1467-6419.00163
Reference: [29] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, G. Huyet: Excitability in a quantum dot semiconductor laser with optical injection.Phys. Rev. Lett. 98 (2007), no. 153903, 4 pages. 10.1103/PhysRevLett.98.153903
Reference: [30] (ed.), A. Ivanyi: Preisach Memorial Book.Akademiai Kiado Budapest (2005).
Reference: [31] Iyer, R. V., Tan, X., Krishnaprasad, P. S.: Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators.IEEE Trans. Automat. Control 50 (2005), 798-810. MR 2141996, 10.1109/TAC.2005.849205
Reference: [32] Jayawardhana, B., Logemann, H., Ryan, E. P.: Infinite-dimensional feedback systems: the circle criterion and input-to-state stability.Commun. Inf. Syst. 8 (2008), 413-444. Zbl 1168.93021, MR 2495748
Reference: [33] Krasnosel'skii, A. M., Rachinskii, D.: On a bifurcation governed by hysteresis nonlinearity.NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 93-115. Zbl 1013.34036, MR 1891697, 10.1007/s00030-002-8120-2
Reference: [34] Krasnosel'skii, M., Pokrovskii, A.: Systems with Hysteresis.Translated from the Russian by Marek Niezgódka Springer, Berlin (1989). Zbl 0665.47038, MR 0987431
Reference: [35] Krauskopf, B., Schneider, K. R., Sieber, J., Wieczorek, S. M., Wolfrum, M.: Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems.Optics Communications 215 (2003), 367-379. 10.1016/S0030-4018(02)02239-3
Reference: [36] Krejčí, P.: On Maxwell equations with the Preisach hysteresis operator: The one-dimensional time-periodic case.Apl. Mat. 34 (1989), 364-374. Zbl 0701.35098, MR 1014077
Reference: [37] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: Mathematical models of hydrological systems with Preisach hysteresis.Physica D 241 (2012), 2010-2028. MR 2994340
Reference: [38] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: Stability results for a soil model with singular hysteretic hydrology.J. Phys.: Conf. Ser. 268 (2011), no. 012016, 19 pages.
Reference: [39] Krejčí, P.: Resonance in Preisach systems.Appl. Math., Praha 45 (2000), 439-468. Zbl 1010.34038, MR 1800964, 10.1023/A:1022333500777
Reference: [40] Kuhnen, K., Krejčí, P.: Compensation of complex hysteresis and creep effects in piezoelectrical actuated systems---a new Preisach modeling approach.IEEE Trans. Automat. Control 54 (2009), 537-550. MR 2191546, 10.1109/TAC.2009.2012984
Reference: [41] Lamba, H., Grinfeld, M., McKee, S., Simpson, R.: Subharmonic ferroresonance in an LCR circuit with hysteresis.IEEE Transactions on Magnetics 33 (1997), 2495-2500. 10.1109/20.595906
Reference: [42] Lamba, H., McKee, S., Simpson, R.: The effect of circuit parameters on ferroresonant solutions in an LCR circuit.J. Phys. A, Math. Gen. 31 (1998), 7065-7076. Zbl 1041.94552, 10.1088/0305-4470/31/34/010
Reference: [43] Mayergoyz, I. D.: Mathematical Models of Hysteresis.Springer, New York (1991). Zbl 0723.73003, MR 1083150
Reference: [44] Mayergoyz, I. D., (eds.), G. Bertotti: The Science of Hysteresis. Vol. III.Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006). Zbl 1117.34047, MR 2307931
Reference: [45] McCarthy, S., Rachinskii, D.: Attempts at a numerical realisation of stochastic differential equations containing Preisach operator.J. Phys.: Conf. Ser. 268 (2011), no. 012019, 15 pages.
Reference: [46] O'Kane, J. P.: The hysteretic linear reservoir---a new Preisach model.Physica B: Condensed Matter 372 (2006), 388-392. 10.1016/j.physb.2005.10.090
Reference: [47] O'Kane, J. P.: Hysteresis in hydrology.Acta Geophys. Pol. 53 (2005), 373-383.
Reference: [48] O'Kane, J. P.: The FEST model-a test bed for hysteresis in hydrology and soil physics.J. Phys.: Conf. Ser. 22 (2005), 148-163.
Reference: [49] O'Kane, J. P., Pokrovskii, A., Krejčí, P., Haverkamp, R.: Hysteresis and terrestrial hydrology.EGS-AGU-EUG Joint Assembly 1 (2003), 6154.
Reference: [50] Pimenov, A., Rachinskii, D.: Linear stability analysis of systems with Preisach memory.Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 997-1018. Zbl 1181.47075, MR 2505656, 10.3934/dcdsb.2009.11.997
Reference: [51] Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J. A., Pokrovskii, A., Rachinskii, D.: Memory effects in population dynamics: spread of infectious disease as a case study.Math. Model. Nat. Phenom. 7 (2012), 1-30. MR 2928740, 10.1051/mmnp/20127313
Reference: [52] Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J., Pokrovskii, A.: Systems with hysteresis in mathematical biology via a canonical example.Mathematical Modeling, Clustering Algorithms and Applications C. L. Wilson Nova Science Publishers (2010).
Reference: [53] Sander, G. S., Glidewell, O. J., Norbury, J.: Dynamic capillary pressure, hysteresis and gravity-driven fingering in porous media.J. Phys.: Conf. Ser. 138 (2008), no. 012023, 14 pages.
Reference: [54] Sethna, J. P., Dahmen, K. A., Perković, O.: Random-field Ising models of hysteresis.The science of Hysteresis Vol. II Physical modeling, micromagnetics, and magnetization dynamics G. Bertotti, I. Mayergoyz Elsevier, Academic Press, Amsterdam (2006), 107-179. Zbl 1148.82018, MR 2307930
Reference: [55] Spanos, P.D., Cacciola, P., Muscolino, G.: Stochastic averaging of Preisach hysteretic systems.J. Eng. Mech. 130 (2004), 1257-1267. 10.1061/(ASCE)0733-9399(2004)130:11(1257)
Reference: [56] Rachinskii, D.: Asymptotic stability of large-amplitude oscillations in systems with hysteresis.NoDEA, Nonlinear Differ. Equ. Appl. 6 (1999), 267-288. Zbl 0938.34036, MR 1710574, 10.1007/s000300050076
Reference: [57] Rezaei-Zare, A., Sanaye-Pasand, M., Mohseni, H., Farhangi, S., Iravani, R.: Analysis of ferroresonance modes in power transformers using Preisach-type hysteretic magnetizing inductance.IEEE Trans. Power Deliv. 22 (2007), 919-929. 10.1109/TPWRD.2006.877078
Reference: [58] Visintin, A.: Differential Models of Hysteresis.Applied Mathematical Sciences 111 Springer, Berlin (1994). Zbl 0820.35004, MR 1329094, 10.1007/978-3-662-11557-2
Reference: [59] Visone, C.: Hysteresis modelling and compensation for smart sensors and actuators.J. Phys.: Conf. Ser. 138 (2008), no. 012028, 24 pages.
Reference: [60] Wang, Y., Ying, Z. G., Zhu, W. Q.: Nonlinear stochastic optimal control of Preisach hysteretic systems.Probabilistic Engineering Mechanics 24 (2009), 255-264. 10.1016/j.probengmech.2008.07.003
.

Files

Files Size Format View
MathBohem_139-2014-1_3.pdf 500.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo