Previous |  Up |  Next

Article

Title: On the asymptotics of solutions to the second initial boundary value problem for Schrödinger systems in domains with conical points (English)
Author: Hung, Nguyen Manh
Author: Long, Hoang Viet
Author: Son, Nguyen Thi Kim
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 1
Year: 2013
Pages: 63-91
Summary lang: English
.
Category: math
.
Summary: In this paper, for the second initial boundary value problem for Schrödinger systems, we obtain a performance of generalized solutions in a neighborhood of conical points on the boundary of the base of infinite cylinders. The main result are asymptotic formulas for generalized solutions in case the associated spectrum problem has more than one eigenvalue in the strip considered. (English)
Keyword: second initial boundary value problem
Keyword: Schrödinger systems
Keyword: generalized solution
Keyword: regularity
Keyword: asymptotic behavior
MSC: 35B40
MSC: 35B65
MSC: 35C20
MSC: 35G46
MSC: 35G99
MSC: 35Q40
idZBL: Zbl 1274.35023
idMR: MR3022769
DOI: 10.1007/s10492-013-0003-9
.
Date available: 2013-01-23T10:13:10Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143135
.
Reference: [1] Anh, N. T., Hung, N. M.: Asymptotic formulas for solutions of parameter-depending elliptic boundary-value problems in domains with conical points.Electron. J. Differ. Equ. No. 125 (2009), 1-21. Zbl 1178.35159, MR 2550087
Reference: [2] Hung, N. M.: The first initial boundary value problem for Schrödinger systems in non-smooth domains.Diff. Uravn. 34 (1998), 1546-1556 Russian. MR 1711290
Reference: [3] Hung, N. M., Anh, N. T.: Regularity of solutions of initial-boundary value problems for parabolic equations in domains with conical points.J. Differ. Equations 245 (2008), 1801-1818. Zbl 1170.35048, MR 2433487, 10.1016/j.jde.2008.07.011
Reference: [4] Hung, N. M., Yao, J. C.: On the asymptotics of solutions of the first initial boundary value problem for hyperbolic systems in infinite cylinders with base containing conical points.Nonlinear Anal., Theory, Methods Appl. 71 (2009), 1620-1635. Zbl 1167.35407, MR 2524375, 10.1016/j.na.2008.12.056
Reference: [5] Hung, N. M., Son, N. T. K.: Existence and smoothness of solutions to second initial boundary value problems for Schrödinger systems in cylinders with non-smooth base.Electron. J. Differ. Equ., No. 35 (2008), 1-11. MR 2392939
Reference: [6] Hung, N. M., Son, N. T. M.: On the regularity of solution of the second initial boundary value problem for Schrödinger systems in domains with conical points.Taiwanese J. Math. 13 (2009), 1885-1907. Zbl 1195.35113, MR 2583527, 10.11650/twjm/1500405647
Reference: [7] Hung, N. M., Tiep, T. X., Son, N. T. K.: Cauchy-Neumann problem for second-order general Schrödinger equations in cylinders with non-smooth bases.Bound. Value Probl., Vol. 2009, Article ID 231802 (2009), 1-13. MR 2530283, 10.1155/2009/231802
Reference: [8] Kato, T.: Perturbation Theory for Linear Operators.Springer Berlin (1966). Zbl 0148.12601
Reference: [9] Kokotov, A., Plamenevskiĭ, B. A.: On the asymptotics on solutions to the Neumann problem for hyperbolic systems in domains with conical points.Algebra i analiz 16 (2004), Russian; English transl. St. Petersburg Math. J. 16 (2005), 477-506. MR 2083566
Reference: [10] Kondratiev, V. G.: Boundary value problems for elliptic equations in domains with conical or angular points.Tr. Mosk. Mat. O.-va 16 (1967), 209-292 Russian. MR 0226187
Reference: [11] Kondratiev, V. G.: Singularities of solutions of Dirichlet problem for second-order elliptic equations in a neighborhood of edges.Differ. Equ. 13 (1977), 2026-2032 Russian. MR 0486987
Reference: [12] Kozlov, V. A., Maz'ya, V. G.: Spectral properties of the operator generated by elliptic boundary-value problems in a cone.Funct. Anal. Appl. 22 (1988), 114-121. MR 0947604, 10.1007/BF01077601
Reference: [13] Kozlov, V. A., Maz'ya, V. G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. Math. Surv. Monographs Vol. 52.American Mathematical Society Providence (1997). MR 1469972
Reference: [14] Kozlov, V. A., Maz'ya, V. G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Math. Surveys and Monographs Vol. 85.Americal Mathematical Society Providence (2001). MR 1788991
Reference: [15] Lions, J.-L., Magenes, F.: Non-Homogeneous Boundary Value Problems and Applications, Vol. 1.Springer New York (1972).
Reference: [16] Lions, J.-L., Magenes, F.: Non-Homogeneous Boundary Value Problems and Applications, Vol. 2.Springer New York (1972).
Reference: [17] Nazarov, S. A., Plamenevskiĭ, B. A.: Elliptic Problems in Domains with Piecewise-Smooth Boundary.Nauka Moskva (1990), Russian.
Reference: [18] Solonnikov, V. A.: On the solvability of classical initial-boundary value problem for the heat equation in a dihedral angle.Zap. Nauchn. Semin. POMI 127 (1983), 7-48.
.

Files

Files Size Format View
AplMat_58-2013-1_3.pdf 384.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo