Previous |  Up |  Next

Article

Title: Penrose transform and monogenic sections (English)
Author: Salač, Tomáš
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 5
Year: 2012
Pages: 399-410
Summary lang: English
.
Category: math
.
Summary: The Penrose transform gives an isomorphism between the kernel of the $2$-Dirac operator over an affine subset and the third sheaf cohomology group on the twistor space. In the paper we give an integral formula which realizes the isomorphism and decompose the kernel as a module of the Levi factor of the parabolic subgroup. This gives a new insight into the structure of the kernel of the operator. (English)
Keyword: Penrose transform
Keyword: monogenic spinors
MSC: 35A22
MSC: 58J10
idMR: MR3007621
DOI: 10.5817/AM2012-5-399
.
Date available: 2012-12-17T14:04:37Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143114
.
Reference: [1] Baston, R. J.: Quaternionic complexes.J. Geom. Phys. 8 (1992), 29–52. Zbl 0764.53022, MR 1165872, 10.1016/0393-0440(92)90042-Y
Reference: [2] Baston, R. J., Eastwood, M.: The Penrose transform – its interaction with representation theory.Oxford University Press, 1989. Zbl 0726.58004, MR 1038279
Reference: [3] Čap, A., Slovák, J.: Parabolic Geometries I, Background and General Theory.American Mathematical Society, Providence, 2009. Zbl 1183.53002, MR 2532439
Reference: [4] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac Systems and Computational Algebra.Birkhäauser, Boston, 2004. Zbl 1064.30049, MR 2089988
Reference: [5] Franek, P.: Generalized Dolbeault Sequences in Parabolic Geometry.J. Lie Theory 18 (4) (2008), 757–773. Zbl 1176.17003, MR 2523135
Reference: [6] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups.Cambridge University Press, 1998. Zbl 0901.22001, MR 1606831
Reference: [7] Krump, L., Salač, T.: Exactness of the Generalized Dolbeault Complex for k Dirac Operators in the Stable Rank.Numerical Analysis and Applied Mathematics ICNAAM, vol. 1479, 2012, pp. 300–303.
Reference: [8] Salač, T.: k-Dirac operators and parabolic geometries.arXiv:1201.0355, 2012.
Reference: [9] Salač, T.: The generalized Dolbeault complexes in Clifford analysis.Ph.D. thesis, MFF UK UUK, Prague, 2012.
Reference: [10] Ward, R. S., Wells, R. O., Jr., : Twistor Geometry and Field.Cambridge University Press, 1990. MR 1054377
.

Files

Files Size Format View
ArchMathRetro_048-2012-5_9.pdf 500.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo