Previous |  Up |  Next

Article

Title: On the structure of the augmentation quotient group for some nonabelian 2-groups (English)
Author: Nan, Jizhu
Author: Zhao, Huifang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 279-292
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite nonabelian group, ${\mathbb Z}G$ its associated integral group ring, and $\triangle (G)$ its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups $Q_{n}(G)=\triangle ^{n}(G)/\triangle ^{n+1}(G)$ is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined. (English)
Keyword: integral group ring
Keyword: augmentation ideal
Keyword: augmentation quotient groups
Keyword: finite 2-group
Keyword: semidihedral group
MSC: 16S34
MSC: 20C05
idZBL: Zbl 1249.20004
idMR: MR2899751
DOI: 10.1007/s10587-012-0013-x
.
Date available: 2012-03-05T07:32:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142057
.
Reference: [1] Bachman, F., Grünenfelder, L.: The periodicity in the graded ring associated with an integral group ring.J. Pure Appl. Algebra 5 (1974), 253-264. MR 0357564, 10.1016/0022-4049(74)90036-X
Reference: [2] Bak, A., Tang, G. P.: Solution to the presentation problem for powers of the augmentation ideal of torsion free and torsion abelian groups.Adv. Math. 189 (2004), 1-37. Zbl 1068.16032, MR 2093478, 10.1016/j.aim.2003.11.002
Reference: [3] Gorenstein, D.: Finite Groups, 2nd ed.New York: Chelsea Publishing Company (1980). Zbl 0463.20012, MR 0569209
Reference: [4] Hales, A. W., Passi, I. B. S.: The augmentation quotients of finite Abelian $p$-groups.Contemp. Math. 93 (1989), 167-171. Zbl 0677.20006, MR 1003351, 10.1090/conm/093/1003351
Reference: [5] Parmenter, M. M.: A basis for powers of the augmentation ideal.Algebra Colloq. 8 (2001), 121-128. Zbl 0979.16015, MR 1838512
Reference: [6] Passi, I. B. S.: Group Rings and Their Augmentation Ideals.Lecture Notes in Mathematics. 715, Springer-Verlag, Berlin (1979). Zbl 0405.20007, MR 0537126
Reference: [7] Tang, G. P.: On a problem of Karpilovsky.Algebra Colloq. 10 (2003), 11-16. Zbl 1034.20006, MR 1961501, 10.1007/s100110300002
Reference: [8] Zhao, H., Tang, G.: Structure of powers of augmentation ideals and their quotient groups for integral group rings of dihedral groups.Chinese J. Shaanxi Norm. Univ., Nat. Sci. Ed. 33 (2005), 18-21. Zbl 1084.20003, MR 2146744
Reference: [9] Zhou, Q., You, H.: Augmentation quotients of the dihedral group.Chinese Chin. Ann. Math., Ser. A 31 (2010), 531-540. Zbl 1224.20001, MR 2760767
Reference: [10] Zhou, Q., You, H.: On the structure of augmentation quotient groups for generalized quaternion group.Algebra Colloq (to appear).
.

Files

Files Size Format View
CzechMathJ_62-2012-1_21.pdf 251.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo