Title:
|
Uncertainty principles for the Weinstein transform (English) |
Author:
|
Mejjaoli, Hatem |
Author:
|
Salhi, Makren |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
941-974 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The Weinstein transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization and a variant of Cowling-Price theorem, Miyachi's theorem, Beurling's theorem, and Donoho-Stark's uncertainty principle are obtained for the Weinstein transform. (English) |
Keyword:
|
Weinstein transform |
Keyword:
|
Hardy's type theorem |
Keyword:
|
Cowling-Price's theorem |
Keyword:
|
Beurling's theorem |
Keyword:
|
Miyachi's theorem |
Keyword:
|
Donoho-Stark's uncertainty principle |
MSC:
|
35B53 |
MSC:
|
43A32 |
MSC:
|
44A05 |
MSC:
|
44A20 |
idZBL:
|
Zbl 1249.35034 |
idMR:
|
MR2886249 |
DOI:
|
10.1007/s10587-011-0061-7 |
. |
Date available:
|
2011-12-16T15:40:26Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141799 |
. |
Reference:
|
[1] Nahia, Z. Ben, Salem, N. Ben: Spherical harmonics and applications associated with the Weinstein operator.Potential Theory---Proc. ICPT 94 J. Král et al. (1996), 235-241. MR 1404710 |
Reference:
|
[2] Nahia, Z. Ben, Salem, N. Ben: On a mean value property associated with the Weinstein operator.Potential Theory---Proc. ICPT 94 J. Král et al. (1996), 243-253. MR 1404711 |
Reference:
|
[3] Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure.J. Math. Anal. Appl. 106 (1985), 180-183. Zbl 0576.42016, MR 0780328, 10.1016/0022-247X(85)90140-4 |
Reference:
|
[4] Beurling, A.: The Collected Works of Arne Beurling, Vol. 1, Vol. 2.L. Carleson, P. Malliavin, J. Neuberger, J. Wermen Birkhäuser Boston (1989). MR 1057613 |
Reference:
|
[5] Brelot, M.: Equation de Weinstein et potentiels de Marcel Riesz.Lect. Notes Math. 681. Séminaire de Théorie de Potentiel Paris, No. 3 (1978), 18-38 French. Zbl 0386.31007, MR 0521776 |
Reference:
|
[6] Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.Rev. Mat. Iberoam. 19 (2003), 22-35. MR 1993414 |
Reference:
|
[7] Cowling, M. G., Price, J. F.: Generalisations of Heisenberg's Inequality.Lect. Notes Math., Vol. 992 Springer Berlin (1983), 443-449. Zbl 0516.43002, MR 0729369, 10.1007/BFb0069174 |
Reference:
|
[8] Daher, R., Kawazoe, T., Mejjaoli, H.: A generalization of Miyachi's theorem.J. Math. Soc. Japan 61 (2009), 551-558. Zbl 1235.43008, MR 2532900, 10.2969/jmsj/06120551 |
Reference:
|
[9] Donoho, D. L., Stark, P. B.: Uncertainty principles and signal recovery.SIAM J. Appl. Math. 49 (1989), 906-931. Zbl 0689.42001, MR 0997928, 10.1137/0149053 |
Reference:
|
[10] Hardy, G. H.: A theorem concerning Fourier transform.J. Lond. Math. Soc. 8 (1933), 227-231. MR 1574130, 10.1112/jlms/s1-8.3.227 |
Reference:
|
[11] Hörmander, L.: A uniqueness theorem of Beurling for Fourier transform pairs.Ark. Mat. 29 (1991), 237-240. MR 1150375, 10.1007/BF02384339 |
Reference:
|
[12] Mejjaoli, H., Trimèche, K.: An analogue of Hardy's theorem and its $L^p$-version for the Dunkl-Bessel transform.J. Concr. Appl. Math. 2 (2004), 397-417. MR 2224912 |
Reference:
|
[13] Mejjaoli, H.: An analogue of Beurling-Hörmander's theorem for the Dunkl-Bessel transform.Fract. Calc. Appl. Anal. 9 (2006), 247-264. Zbl 1210.44002, MR 2305441 |
Reference:
|
[14] Mejjaoli, H., Trimèche, K.: A variant of Cowling-Price's theorem for the Dunkl transform on $\mathbb R$.J. Math. Anal. Appl. 345 (2008), 593-606. MR 2429159, 10.1016/j.jmaa.2006.02.029 |
Reference:
|
[15] Mejjaoli, H.: Global well-posedness and scattering for a class of nonlinear Dunkl-Schrödinger equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1121-1139. Zbl 1185.35262, MR 2577514, 10.1016/j.na.2009.08.045 |
Reference:
|
[16] Mejjaoli, H.: Nonlinear Dunkl-wave equations.Appl. Anal. 89 (2010), 1645-1668. Zbl 1204.35121, MR 2773341, 10.1080/00036811.2010.495334 |
Reference:
|
[17] Miyachi, A.: A generalization of theorem of Hardy.Harmonic Analysis Seminar, Izunagaoka, Shizuoka-Ken, Japan 1997 44-51 (). |
Reference:
|
[18] Morgan, G. W.: A note on Fourier transforms.J. Lond. Math. Soc. 9 (1934), 188-192. Zbl 0009.24801, MR 1574180 |
Reference:
|
[19] Parui, S., Sarkar, R. P.: Beurling's theorem and $L^{p}$-$L^{q}$ Morgan's theorem for step two nilpotent Lie groups.Publ. Res. Inst. Math. Sci. 44 (2008), 1027-1056. MR 2477903, 10.2977/prims/1231263778 |
Reference:
|
[20] Pfannschmidt, C.: A generalization of the theorem of Hardy: A most general version of the uncertainty principle for Fourier integrals.Math. Nachr. 182 (1996), 317-327. Zbl 0873.42005, MR 1419899, 10.1002/mana.19961820114 |
Reference:
|
[21] Ray, S. K., Sarkar, R. P.: Cowling-Price theorem and characterization of heat kernel on symmetric spaces.Proc. Indian Acad. Sci. (Math. Sci.) 114 (2004), 159-180. Zbl 1059.22010, MR 2062397, 10.1007/BF02829851 |
Reference:
|
[22] Slepian, D., Pollak, H. O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty I.Bell. System Tech. J. 40 (1961), 43-63. Zbl 0184.08601, MR 0140732, 10.1002/j.1538-7305.1961.tb03976.x |
Reference:
|
[23] Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: Extensions to many dimensions, generalized prolate spheroidal functions.Bell. System Tech. J. 43 (1964), 3009-3057. Zbl 0184.08604, MR 0181766, 10.1002/j.1538-7305.1964.tb01037.x |
. |