Previous |  Up |  Next

Article

Title: Uncertainty principles for the Weinstein transform (English)
Author: Mejjaoli, Hatem
Author: Salhi, Makren
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 941-974
Summary lang: English
.
Category: math
.
Summary: The Weinstein transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization and a variant of Cowling-Price theorem, Miyachi's theorem, Beurling's theorem, and Donoho-Stark's uncertainty principle are obtained for the Weinstein transform. (English)
Keyword: Weinstein transform
Keyword: Hardy's type theorem
Keyword: Cowling-Price's theorem
Keyword: Beurling's theorem
Keyword: Miyachi's theorem
Keyword: Donoho-Stark's uncertainty principle
MSC: 35B53
MSC: 43A32
MSC: 44A05
MSC: 44A20
idZBL: Zbl 1249.35034
idMR: MR2886249
DOI: 10.1007/s10587-011-0061-7
.
Date available: 2011-12-16T15:40:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141799
.
Reference: [1] Nahia, Z. Ben, Salem, N. Ben: Spherical harmonics and applications associated with the Weinstein operator.Potential Theory---Proc. ICPT 94 J. Král et al. (1996), 235-241. MR 1404710
Reference: [2] Nahia, Z. Ben, Salem, N. Ben: On a mean value property associated with the Weinstein operator.Potential Theory---Proc. ICPT 94 J. Král et al. (1996), 243-253. MR 1404711
Reference: [3] Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure.J. Math. Anal. Appl. 106 (1985), 180-183. Zbl 0576.42016, MR 0780328, 10.1016/0022-247X(85)90140-4
Reference: [4] Beurling, A.: The Collected Works of Arne Beurling, Vol. 1, Vol. 2.L. Carleson, P. Malliavin, J. Neuberger, J. Wermen Birkhäuser Boston (1989). MR 1057613
Reference: [5] Brelot, M.: Equation de Weinstein et potentiels de Marcel Riesz.Lect. Notes Math. 681. Séminaire de Théorie de Potentiel Paris, No. 3 (1978), 18-38 French. Zbl 0386.31007, MR 0521776
Reference: [6] Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.Rev. Mat. Iberoam. 19 (2003), 22-35. MR 1993414
Reference: [7] Cowling, M. G., Price, J. F.: Generalisations of Heisenberg's Inequality.Lect. Notes Math., Vol. 992 Springer Berlin (1983), 443-449. Zbl 0516.43002, MR 0729369, 10.1007/BFb0069174
Reference: [8] Daher, R., Kawazoe, T., Mejjaoli, H.: A generalization of Miyachi's theorem.J. Math. Soc. Japan 61 (2009), 551-558. Zbl 1235.43008, MR 2532900, 10.2969/jmsj/06120551
Reference: [9] Donoho, D. L., Stark, P. B.: Uncertainty principles and signal recovery.SIAM J. Appl. Math. 49 (1989), 906-931. Zbl 0689.42001, MR 0997928, 10.1137/0149053
Reference: [10] Hardy, G. H.: A theorem concerning Fourier transform.J. Lond. Math. Soc. 8 (1933), 227-231. MR 1574130, 10.1112/jlms/s1-8.3.227
Reference: [11] Hörmander, L.: A uniqueness theorem of Beurling for Fourier transform pairs.Ark. Mat. 29 (1991), 237-240. MR 1150375, 10.1007/BF02384339
Reference: [12] Mejjaoli, H., Trimèche, K.: An analogue of Hardy's theorem and its $L^p$-version for the Dunkl-Bessel transform.J. Concr. Appl. Math. 2 (2004), 397-417. MR 2224912
Reference: [13] Mejjaoli, H.: An analogue of Beurling-Hörmander's theorem for the Dunkl-Bessel transform.Fract. Calc. Appl. Anal. 9 (2006), 247-264. Zbl 1210.44002, MR 2305441
Reference: [14] Mejjaoli, H., Trimèche, K.: A variant of Cowling-Price's theorem for the Dunkl transform on $\mathbb R$.J. Math. Anal. Appl. 345 (2008), 593-606. MR 2429159, 10.1016/j.jmaa.2006.02.029
Reference: [15] Mejjaoli, H.: Global well-posedness and scattering for a class of nonlinear Dunkl-Schrödinger equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1121-1139. Zbl 1185.35262, MR 2577514, 10.1016/j.na.2009.08.045
Reference: [16] Mejjaoli, H.: Nonlinear Dunkl-wave equations.Appl. Anal. 89 (2010), 1645-1668. Zbl 1204.35121, MR 2773341, 10.1080/00036811.2010.495334
Reference: [17] Miyachi, A.: A generalization of theorem of Hardy.Harmonic Analysis Seminar, Izunagaoka, Shizuoka-Ken, Japan 1997 44-51 ().
Reference: [18] Morgan, G. W.: A note on Fourier transforms.J. Lond. Math. Soc. 9 (1934), 188-192. Zbl 0009.24801, MR 1574180
Reference: [19] Parui, S., Sarkar, R. P.: Beurling's theorem and $L^{p}$-$L^{q}$ Morgan's theorem for step two nilpotent Lie groups.Publ. Res. Inst. Math. Sci. 44 (2008), 1027-1056. MR 2477903, 10.2977/prims/1231263778
Reference: [20] Pfannschmidt, C.: A generalization of the theorem of Hardy: A most general version of the uncertainty principle for Fourier integrals.Math. Nachr. 182 (1996), 317-327. Zbl 0873.42005, MR 1419899, 10.1002/mana.19961820114
Reference: [21] Ray, S. K., Sarkar, R. P.: Cowling-Price theorem and characterization of heat kernel on symmetric spaces.Proc. Indian Acad. Sci. (Math. Sci.) 114 (2004), 159-180. Zbl 1059.22010, MR 2062397, 10.1007/BF02829851
Reference: [22] Slepian, D., Pollak, H. O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty I.Bell. System Tech. J. 40 (1961), 43-63. Zbl 0184.08601, MR 0140732, 10.1002/j.1538-7305.1961.tb03976.x
Reference: [23] Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: Extensions to many dimensions, generalized prolate spheroidal functions.Bell. System Tech. J. 43 (1964), 3009-3057. Zbl 0184.08604, MR 0181766, 10.1002/j.1538-7305.1964.tb01037.x
.

Files

Files Size Format View
CzechMathJ_61-2011-4_8.pdf 403.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo