Previous |  Up |  Next

Article

Title: Integrability for solutions to quasilinear elliptic systems (English)
Author: Leonetti, Francesco
Author: Petricca, Pier Vincenzo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 481-487
Summary lang: English
.
Category: math
.
Summary: In this paper we prove an estimate for the measure of superlevel sets of weak solutions to quasilinear elliptic systems in divergence form. In some special cases, such an estimate allows us to improve on the integrability of the solution. (English)
Keyword: level set
Keyword: integrability
Keyword: solution
Keyword: quasilinear
Keyword: elliptic
Keyword: system
MSC: 35D10
MSC: 35J47
MSC: 35J62
idZBL: Zbl 1224.35139
idMR: MR2741881
.
Date available: 2010-09-02T14:19:26Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140724
.
Reference: [1] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. Un. Mat. Ital. 4 (1968), 135–137. MR 0227827
Reference: [2] Giaquinta M., Modica G.: Regularity results for some classes of higher order nonlinear elliptic systems.J. Reine Angew. Math. 311/312 (1979), 145–169. MR 0549962
Reference: [3] Giusti E.: Direct Methods in the Calculus of Variations.World Scientific, River Edge, NJ, 2003. Zbl 1028.49001, MR 1962933
Reference: [4] Leonardi S.: A maximum principle for linear elliptic systems with discontinuous coefficients.Comment. Math. Univ. Carolin. 45 (2004), 457–474. Zbl 1098.35044, MR 2103140
Reference: [5] Leonetti F., Petricca P.V.: Regularity for solutions to some nonlinear elliptic systems.Complex Var. Elliptic Equ.(to appear). MR 2852081
Reference: [6] Mandras F.: Principio di massimo per una classe di sistemi ellittici degeneri quasi lineari.Rend. Sem. Fac. Sci. Univ. Cagliari 46 (1976), 81–88. MR 0445115
Reference: [7] Nečas J., Stará J.: Principio di massimo per i sistemi ellittici quasi-lineari non diagonali.Boll. Un. Mat. Ital. 6 (1972), 1–10. MR 0315281
Reference: [8] Šverák V., Yan X.: Non-Lipschitz minimizers of smooth uniformly convex functionals.Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276. MR 1946762, 10.1073/pnas.222494699
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_10.pdf 202.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo