Previous |  Up |  Next

Article

Title: Asymptotics of variance of the lattice point count (English)
Author: Janáček, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 751-758
Summary lang: English
.
Category: math
.
Summary: The variance of the number of lattice points inside the dilated bounded set $rD$ with random position in $\Bbb R^d$ has asymptotics $\sim r^{d-1}$ if the rotational average of the squared modulus of the Fourier transform of the set is $O(\rho ^{-d-1})$. The asymptotics follow from Wiener's Tauberian theorem. (English)
Keyword: point lattice
Keyword: Fourier transform
Keyword: volume
Keyword: variance
MSC: 11H06
MSC: 62D05
idZBL: Zbl 1174.60002
idMR: MR2455936
.
Date available: 2010-07-20T14:05:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140419
.
Reference: [1] Bochner, S., Chandrasekharan, K.: Fourier transforms.Princeton University Press (1949). Zbl 0065.34101, MR 0031582
Reference: [2] Brandolini, L., Hofmann, S., Iosevich, A.: Sharp rate of average decay of Fourier transform of a bounded set.Geom. Func. Anal. 13 (2003), 671-680. MR 2006553, 10.1007/s00039-003-0426-7
Reference: [3] Janáček, J.: Variance of periodic measure of bounded set with random position.Comment. Math. Univ. Carolinae 47 (2006), 473-482. MR 2281006
Reference: [4] Kendall, D. G.: On the number of lattice points inside a random oval.Quarterly J. Math. 19 (1948), 1-26. Zbl 0031.11201, MR 0024929, 10.1093/qmath/os-19.1.1
Reference: [5] Kendall, D. G., Rankin, R. A.: On the number of points of a given lattice in a random hypersphere.Quarterly J. Math., 2nd Ser. 4 (1953), 178-189. Zbl 0052.14503, MR 0057484, 10.1093/qmath/4.1.178
Reference: [6] Matérn, B.: Precision of area estimation: a numerical study.J. Microsc. 153 (1989), 269-283. 10.1111/j.1365-2818.1989.tb01477.x
Reference: [7] Matheron, G.: Les variables regionalisés et leur estimation.Masson et CIE, Paris (1965).
Reference: [8] Rao, R. C.: Linear statistical inference and its applications.2nd ed. , John Wiley & Sons, New York (1973). Zbl 0256.62002, MR 0346957
Reference: [9] Rataj, J.: On set covariance and three-point test sets.Czech. Math. J. 54 (2004), 205-214. Zbl 1049.52004, MR 2040232, 10.1023/B:CMAJ.0000027260.34288.7f
Reference: [10] Watson, G. N.: A treatise on the theory of Bessel functions.2nd edition, Cambridge University Press (1922). MR 0010746
Reference: [11] Rudin, W.: Functional Analysis.McGraw-Hill Book Company (1973). Zbl 0253.46001, MR 0365062
Reference: [12] Varchenko, A.: Number of lattice points in families of homothetic domains in $\Bbb R^n$.Func. Anal. Appl. 17 (1983), 79-83. MR 0705041, 10.1007/BF01083133
Reference: [13] Wiener, N.: The Fourier integral and certain of its applications.Dover Publications Inc., New York (1933). Zbl 0006.05401, MR 0100201
.

Files

Files Size Format View
CzechMathJ_58-2008-3_13.pdf 246.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo