Previous |  Up |  Next

Article

Title: Numerical modelling of semi-coercive beam problem with unilateral elastic subsoil of Winkler's type (English)
Author: Sysala, Stanislav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 2
Year: 2010
Pages: 151-187
Summary lang: English
.
Category: math
.
Summary: A non-linear semi-coercive beam problem is solved in this article. Suitable numerical methods are presented and their uniform convergence properties with respect to the finite element discretization parameter are proved here. The methods are based on the minimization of the total energy functional, where the descent directions of the functional are searched by solving the linear problems with a beam on bilateral elastic ``springs''. The influence of external loads on the convergence properties is also investigated. The effectiveness of the algorithms is illustrated on numerical examples. (English)
Keyword: non-linear subsoil of Winkler's type
Keyword: semi-coercive beam problem
Keyword: approximation
Keyword: iterative methods
Keyword: convergence
Keyword: projection
Keyword: load stability
MSC: 65K10
MSC: 74B20
MSC: 74G65
MSC: 74K10
MSC: 90C20
MSC: 90C31
MSC: 90C90
idZBL: Zbl 1224.74011
idMR: MR2600940
DOI: 10.1007/s10492-010-0006-8
.
Date available: 2010-07-20T13:39:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140392
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Academic Press New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations.SIAM J. Numer. Anal. 38 (2000), 1200-1216. Zbl 0979.65046, MR 1786137, 10.1137/S0036142999356719
Reference: [3] Fučík, S., Kufner, A.: Nonlinear Differential Equations.Elsevier Amsterdam (1980). MR 0558764
Reference: [4] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia Praha (1977). MR 0482102
Reference: [5] Horák, J. V., Netuka, H.: Mathematical models of non-linear subsoils of Winkler's type.In: Proceedings of 21st Conference Computational Mechanics 2005 ZČU Plzeň (2005), 235-242, 431-438 Czech.
Reference: [6] Netuka, H.: A new approach to the problem of an elastic beam on a nonlinear foundation. Part 1: Formulations.Appl. Comput. Mech In print.
Reference: [7] Netuka, H., Machalová, J.: A new approach to the problem of an elastic beam on a nonlinear foundation. Part 2: Solution.Appl. Comput. Mech Submitted.
Reference: [8] Sysala, S.: Mathematical modelling of a beam on a unilateral elastic subsoil.In: Proceedings of the 14th International Seminar Modern Mathematical Methods in Engineering JČMF, VŠB-TU Ostrava (2005), 193-197 Czech.
Reference: [9] Sysala, S.: On a dual method to a beam problem with a unilateral elastic subsoil of Winkler's type.In: Proceedings of Seminar on Numerical Analysis---SNA'07 Institute of Geonics AS CR Ostrava (2007), 95-100. MR 2433726
Reference: [10] Sysala, S.: Unilateral elastic subsoil of Winkler's type: Semi-coercive beam problem.Appl. Math. 53 (2008), 347-379. Zbl 1199.49051, MR 2433726, 10.1007/s10492-008-0030-0
Reference: [11] Sysala, S.: Numerical illustration of theoretical results for non-linear semi-coercive beam problem.In: Proceedings of Seminar on Numerical Analysis---SNA'08 TU Liberec (2008), 110-114. MR 2433726
Reference: [11] Sysala, S.: Numerical illustration of theoretical results for non-linear semi-coercive beam problem.In: Proceedings of Seminar on Numerical Analysis---SNA'08 TU Liberec (2008), 110-114. MR 2433726
.

Files

Files Size Format View
AplMat_55-2010-2_3.pdf 436.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo