Title:
|
On two-scale convergence and related sequential compactness topics (English) |
Author:
|
Holmbom, Anders |
Author:
|
Silfver, Jeanette |
Author:
|
Svanstedt, Nils |
Author:
|
Wellander, Niklas |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
51 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
247-262 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A general concept of two-scale convergence is introduced and two-scale compactness theorems are stated and proved for some classes of sequences of bounded functions in $L^{2}(\Omega )$ involving no periodicity assumptions. Further, the relation to the classical notion of compensated compactness and the recent concepts of two-scale compensated compactness and unfolding is discussed and a defect measure for two-scale convergence is introduced. (English) |
Keyword:
|
two-scale convergence |
Keyword:
|
compensated compactness |
Keyword:
|
two-scale transform |
Keyword:
|
unfolding |
MSC:
|
40A30 |
MSC:
|
74Q05 |
idZBL:
|
Zbl 1164.40304 |
idMR:
|
MR2228665 |
DOI:
|
10.1007/s10492-006-0014-x |
. |
Date available:
|
2009-09-22T18:25:51Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134639 |
. |
Reference:
|
[1] G. Allaire: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482–2518. Zbl 0770.35005, MR 1185639, 10.1137/0523084 |
Reference:
|
[2] H. W. Alt: Lineare Funktionalanalysis.Springer-Verlag, Berlin, 1985. Zbl 0577.46001 |
Reference:
|
[3] G. Allaire, M. Briane: Multiscale convergence and reiterated homogenization.Proc. Roy. Soc. Edinb. 126 (1996), 297–342. MR 1386865 |
Reference:
|
[4] M. Amar: Two-scale convergence and homogenization on ${\mathrm BV}(\Omega )$.Asymptotic Anal. 16 (1998), 65–84. MR 1600123 |
Reference:
|
[5] B. Birnir, N. Svanstedt, and N. Wellander: Two-scale compensated compactness.Submitted. |
Reference:
|
[6] A. Bourgeat, A. Mikelic, and S. Wright: Stochastic two-scale convergence in the mean and applications.J. Reine Angew. Math. 456 (1994), 19–51. MR 1301450 |
Reference:
|
[7] J. Casado-Diaz, I. Gayte: A general compactness result and its application to the two-scale convergence of almost periodic functions.C. R. Acad. Sci. Paris, Série I 323 (1996), 329–334. MR 1408763 |
Reference:
|
[8] D. Cioranescu, A. Damlamian, and G. Griso: Periodic unfolding and homogenization.C. R. Math., Acad. Sci. Paris 335 (2002), 99–104. MR 1921004, 10.1016/S1631-073X(02)02429-9 |
Reference:
|
[9] R. E. Edwards: Functional Analysis.Holt, Rinehart and Winston, New York, 1965. Zbl 0182.16101, MR 0221256 |
Reference:
|
[10] A. Holmbom, N. Svanstedt, and N. Wellander: Multiscale convergence and reiterated homogenization for parabolic problems.Appl. Math 50 (2005), 131–151. MR 2125155, 10.1007/s10492-005-0009-z |
Reference:
|
[11] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall: Reiterated homogenization of nonlinear monotone operators.Chin. Ann. Math., Ser. B 22 (2001), 1–12. MR 1823125, 10.1142/S0252959901000024 |
Reference:
|
[12] D. Lukkassen, G. Nguetseng, and P. Wall: Two-scale convergence.Int. J. Pure Appl. Math. 2 (2002), 35–86. MR 1912819 |
Reference:
|
[13] M. L. Mascarenhas, A.-M. Toader: Scale convergence in homogenization.Numer. Funct. Anal. Optimization 22 (2001), 127–158. MR 1841866, 10.1081/NFA-100103791 |
Reference:
|
[14] L. Nechvátal: Alternative approaches to the two-scale convergence.Appl. Math. 49 (2004), 97–110. Zbl 1099.35012, MR 2043076, 10.1023/B:APOM.0000027218.04167.9b |
Reference:
|
[15] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608–623. Zbl 0688.35007, MR 0990867, 10.1137/0520043 |
Reference:
|
[16] L. Tartar: Compensated compactness and applications to partial differential equations.Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV. Res. Notes Math. 39, (ed.), Pitman, San Francisco, 1979, pp. 136–212. Zbl 0437.35004, MR 0584398 |
. |