Previous |  Up |  Next

Article

Title: A comparison of solvers for linear complementarity problems arising from large-scale masonry structures (English)
Author: Ainsworth, Mark
Author: Mihai, L. Angela
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 2
Year: 2006
Pages: 93-128
Summary lang: English
.
Category: math
.
Summary: We compare the numerical performance of several methods for solving the discrete contact problem arising from the finite element discretisation of elastic systems with numerous contact points. The problem is formulated as a variational inequality and discretised using piecewise quadratic finite elements on a triangulation of the domain. At the discrete level, the variational inequality is reformulated as a classical linear complementarity system. We compare several state-of-art algorithms that have been advocated for such problems. Computational tests illustrate the use of these methods for a large collection of elastic bodies, such as a simplified bidimensional wall made of bricks or stone blocks, deformed under volume and surface forces. (English)
Keyword: linear elasticity
Keyword: equilibrium problems
Keyword: variational inequality
Keyword: complementarity problems
Keyword: masonry structures
MSC: 49J40
MSC: 74B10
MSC: 74G15
MSC: 74L99
MSC: 90C33
idZBL: Zbl 1164.74355
idMR: MR2212309
DOI: 10.1007/s10492-006-0008-8
.
Date available: 2009-09-22T18:25:11Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134633
.
Reference: [1] A. Berman, R. J.  Plemmons: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Scientific Computing Series.Academic Press, New York, 1979. MR 0544666
Reference: [2] S. C.  Brenner, L. R.  Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, Vol.  15.Springer-Verlag, New York, 1994. MR 1278258, 10.1007/978-1-4757-4338-8_7
Reference: [3] G. Duvaut, J.-L.  Lions: Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften, Vol. 219.Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0521262
Reference: [4] G. Fichera: Encyclopedia of physics.Existence Theorems in Elasticity-Boundary Value Problems of Elasticity with Unilateral Constraints, Volume  VI  a/2, S. Flügge (ed.), Springer-Verlag, Berlin, 1972, pp. 347–427.
Reference: [5] P. E.  Gill, W. Murray, and M. H.  Wright: Practical Optimization.Academic Press, London, 1981. MR 0634376
Reference: [6] R. Glowinski, J.-L.  Lions, and R. Trémolières: Numerical Analysis of Variational Inequalities. Studies in Mathematics and its Applications, Vol.  8.North-Holland, Amsterdam-New York-Oxford, 1981, English version edition. MR 0635927
Reference: [7] R. L.  Graves: A principal pivoting simplex algorithm for linear and quadratic programming.Oper. Res. 15 (1967), 482–494. Zbl 0154.19604, MR 0211756, 10.1287/opre.15.3.482
Reference: [8] M. Hintermüller, K. Ito, and K. Kunisch: The primal-dual active set strategy as a semismooth Newton method.SIAM J.  Optim. 13 (2003), 865–888. MR 1972219
Reference: [9] M. Hintermüller, V. A.  Kovtunenko, and K. Kunisch: The primal-dual active set method for a crack problem with non-penetration.IMA  J.  Appl. Math. 69 (2004), 1–26. MR 2029355, 10.1093/imamat/69.1.1
Reference: [10] M. Hintermüller, V. A.  Kovtunenko, and K. Kunisch: Generalized Newton methods for crack problems with nonpenetration condition.Numer. Methods Partial Differential Equations 21 (2005), 586–610. MR 2128598, 10.1002/num.20053
Reference: [11] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek: Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences, Vol. 66.Springer-Verlag, Berlin-Heidelberg-New York, 1988. MR 0952855
Reference: [12] I. Hlaváček, J. Nedoma: On a solution of a generalized semi-coercive contact problem in thermo-elasticity.Math. Comput. Simul. 60 (2002), 1–17. MR 1916897, 10.1016/S0378-4754(01)00433-5
Reference: [13] N. Kikuchi, J. T.  Oden: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Studies in Applied Mathematics, Vol. 8.SIAM, Philadelphia, 1988. MR 0961258
Reference: [14] C. L.  Lawson, R. J.  Hanson: Solving Least Squares Problems. Series in Automatic Computation.Prentice-Hall, Englewood Cliffs, 1974. MR 0366019
Reference: [15] K. G.  Murty: Complementarity, Linear and Nonlinear Programming.Heldermann-Verlag, Berlin, 1988. Zbl 0634.90037, MR 0949214
Reference: [16] L. F.  Portugal, J. J.  Judice, and L. N.  Vicente: A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables.Math. Comput. 63 (1994), 625–643. MR 1250776, 10.1090/S0025-5718-1994-1250776-4
Reference: [17] V. V.  Prasolov: Problems and Theorems in Linear Algebra. Translations of Mathematical Monographs, Vol.  134.AMS, Providence, 1994. MR 1277174, 10.1090/mmono/134
Reference: [18] S. J.  Wright: Primal-Dual Interior-Point Methods.SIAM, Philadelphia, 1997. Zbl 0863.65031, MR 1422257
.

Files

Files Size Format View
AplMat_51-2006-2_2.pdf 746.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo