Previous |  Up |  Next

Article

Title: On a generalization of Nikolskij's extension theorem in the case of two variables (English)
Author: Ženíšek, Alexander
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 5
Year: 2003
Pages: 367-404
Summary lang: English
.
Category: math
.
Summary: A modification of the Nikolskij extension theorem for functions from Sobolev spaces $H^k(\Omega )$ is presented. This modification requires the boundary $\partial \Omega $ to be only Lipschitz continuous for an arbitrary $k\in \mathbb{N}$; however, it is restricted to the case of two-dimensional bounded domains. (English)
Keyword: Whitney’s extension
Keyword: Calderon’s extension
Keyword: Nikolskij’s extension
Keyword: modified Nikolskij’s extension in case of 2D-domains with a Lipschitz continuous boundary
MSC: 46E35
MSC: 46E39
MSC: 46E99
idZBL: Zbl 1099.46022
idMR: MR2008890
DOI: 10.1023/B:APOM.0000024482.61562.2b
.
Date available: 2009-09-22T18:14:27Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134536
.
Reference: [1] V. M.  Babič: On the extension of functions.Uspekhi Mat. Nauk 8 (1953), 111–113. (Russian) MR 0056675
Reference: [2] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [3] G. M.  Fichtengolc: Differential and Integral Calculus  I.Gostechizdat, Moscow, 1951. (Russian)
Reference: [4] M. R.  Hestenes: Extension of the range of a differentiable function.Duke Math.  J. 8 (1941), 183–192. Zbl 0024.38602, MR 0003434, 10.1215/S0012-7094-41-00812-8
Reference: [5] A.  Kufner, O. John, S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [6] J.  Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague/Masson, Paris, 1967. MR 0227584
Reference: [7] S. M.  Nikolskij: On imbedding theorems, extensions and approximations of differentiable functions in many variables.Uspekhi Mat. Nauk 16 (1961), 63–111. (Russian) MR 0149267
Reference: [8] L. A.  Oganesjan, L. A.  Ruchovec: Variational Difference Methods for the Solution of Elliptic Problems.Izdat. Akad. Nauk ArSSR, Jerevan, 1979. (Russian)
Reference: [9] H.  Whitney: Analytic extensions of differentiable functions defined in closed sets.Trans. Amer. Math. Soc. 36 (1936), 63–89. MR 1501735, 10.1090/S0002-9947-1934-1501735-3
Reference: [10] A.  Ženíšek: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations.Academic Press, London, 1990. MR 1086876
Reference: [11] A.  Ženíšek: Finite element variational crimes in the case of semiregular elements.Appl. Math. 41 (1996), 367–398. MR 1404547
.

Files

Files Size Format View
AplMat_48-2003-5_3.pdf 486.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo