Previous |  Up |  Next

Article

Title: Existence and uniqueness for non-linear singular integral equations used in fluid mechanics (English)
Author: Ladopoulos, E. G.
Author: Zisis, V. A.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 5
Year: 1997
Pages: 345-367
Summary lang: English
.
Category: math
.
Summary: Non-linear singular integral equations are investigated in connection with some basic applications in two-dimensional fluid mechanics. A general existence and uniqueness analysis is proposed for non-linear singular integral equations defined on a Banach space. Therefore, the non-linear equations are defined over a finite set of contours and the existence of solutions is investigated for two different kinds of equations, the first and the second kind. Moreover, the existence of solutions is further studied for non-linear singular integral equations over a finite number of arbitrarily ordered arcs. An application to fluid mechanics theory is finally given for the determination of the form of the profiles of a turbomachine in two-dimensional flow of an incompressible fluid. (English)
Keyword: non-linear singular integral equations
Keyword: existence and uniqueness theorems
Keyword: Banach spaces
Keyword: Hölder conditions
Keyword: fluid mechanics
Keyword: equations over finite set of contours
Keyword: steady incompressible motion
Keyword: turbomachines
MSC: 45E05
MSC: 45G05
MSC: 65L10
MSC: 65R20
MSC: 76B99
MSC: 76M99
idZBL: Zbl 0906.76076
idMR: MR1467554
DOI: 10.1023/A:1023058024885
.
Date available: 2009-09-22T17:55:33Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134363
.
Reference: [1] E. G. Ladopoulos: On the numerical solution of the finite-part singular integral equations of the first and the second kind used in fracture mechanics.Comp. Meth. Appl. Mech. Engng 65 (1987), 253–266. MR 0919245, 10.1016/0045-7825(87)90159-9
Reference: [2] E. G. Ladopoulos: On a new integration rule with the Gegenbauer polynomials for singular integral equations, used in the theory of elasticity.Ing. Archiv 58 (1988), 35–46. Zbl 0627.73018, 10.1007/BF00537198
Reference: [3] E. G. Ladopoulos: On the numerical evaluation of the general type of finite-part singular integrals and integral equations used in fracture mechanics.J. Engrg. Fract. Mech. 31 (1988), 315–337. 10.1016/0013-7944(88)90075-6
Reference: [4] E. G. Ladopoulos: The general type of finite-part singular integrals and integral equations with logarithmic singularities used in fracture mechanics.Acta Mech. 75 (1988), 275–285. Zbl 0667.73072, 10.1007/BF01174641
Reference: [5] E. G. Ladopoulos: On the solution of the two-dimensional problem of a plane crack of arbitrary shape in an anisotropic material.J. Engrg Fract. Mech. 28 (1987), 187–195. 10.1016/0013-7944(87)90212-8
Reference: [6] E. G. Ladopoulos: On the numerical evaluation of the singular integral equations used in two and three-dimensional plasticity problems.Mech. Res. Commun. 14 (1987), 263–274. Zbl 0635.73044, 10.1016/0093-6413(87)90039-5
Reference: [7] E. G. Ladopoulos: Singular integral representation of three-dimensional plasticity fracture problem.Theor. Appl. Fract. Mech. 8 (1987), 205–211. 10.1016/0167-8442(87)90047-4
Reference: [8] E. G. Ladopoulos: On the numerical solution of the multidimensional singular integrals and integral equations used in the theory of linear viscoelasticity.Internat. J. Math. Math. Scien. 11 (1988), 561–574. Zbl 0665.65097, MR 0947288, 10.1155/S0161171288000675
Reference: [9] E. G. Ladopoulos: Relativistic elastic stress analysis for moving frames.Rev. Roum. Sci. Tech., Méc. Appl. 36 (1991), 195–209. MR 1171626
Reference: [10] J. Andrews and J. M. Ball: Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity.J. Diff. Eqns 44 (1982), 306–341. MR 0657784, 10.1016/0022-0396(82)90019-5
Reference: [11] S. S. Antman: Ordinary differential equations of nonlinear elasticity I: Foundations of the theories of nonlinearly elastic rods and shells.Arch. Ration. Mech. Anal. 61 (1976), 307–351. MR 0418580, 10.1007/BF00250722
Reference: [12] S. S. Antman: Ordinary differential equations of nonlinear elasticity II: Existence and regularity for conservative boundary value problems.Arch. Ration. Mech. Anal. 61 (1976), 352–393.
Reference: [13] S. S. Antman, E. R. Carbone: Shear and necking instabilities in nonlinear elasticity.J. Elasticity 7 (1977), 125–151. MR 0451990, 10.1007/BF00041087
Reference: [14] J. M. Ball: Convexity conditions and existence theorems in nonlinear elasticity.Arch. Ration. Mech. Anal. 63 (1977), 337-403. Zbl 0368.73040, MR 0475169
Reference: [15] J. M. Ball: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity.Phil. Trans. R. Soc. Lond. A 306 (1982), 557–611. Zbl 0513.73020, MR 0703623, 10.1098/rsta.1982.0095
Reference: [16] J. M. Ball: Remarques sur l’existence et la régularité des solutions d’elastostatique nonlinéaire, in: Recent Contributions to Nonlinear Partial Differential Equations.Pitman, Boston, 1981, pp. 50–62. MR 0639745
Reference: [17] H. Brezis: Equations et inéquations non lineaires dans les éspaces vectoriels en dualite.Ann. Inst. Fourier 18 (1968), 115–175. Zbl 0169.18602, MR 0270222, 10.5802/aif.280
Reference: [18] P. G. Ciarlet, P. Destuynder: A justification of a nonlinear model in plate theory.Comp. Meth. Appl. Mech. Engng 17 (1979), 227–258. MR 0533827
Reference: [19] P. G. Ciarlet, J. Nečas: Injectivité presque partout, autocontact, et noninterpénétrabilité en élasticité non linéaire tridimensionnelle.C. R. Akad. Sci. Paris, Sér I 301 (1985), 621–624. MR 0816644
Reference: [20] P. G. Ciarlet, J. Nečas: Injectivity and self-contact in non-linear elasticity.Arch. Ration. Mech. Anal. 97 (1987), 171–188. MR 0862546, 10.1007/BF00250807
Reference: [21] C. M. Dafermos: The mixed initial-boundary value problem for the equations of nonlinear one dimensional viscoelasticity.J. Diff. Eqns 6 (1969), 71–86. Zbl 0218.73054, MR 0241831, 10.1016/0022-0396(69)90118-1
Reference: [22] C. M. Dafermos: Development of singularities in the motion of materials with fading memory.Arch. Ration. Mech. Anal. 91 (1985), 193–205. MR 0806001
Reference: [23] C. M. Dafermos, L. Hsiao: Development of singularities in solutions of the equations of nonlinear thermoelasticity.Q. Appl. Math. 44 (1986), 463–474. MR 0860899, 10.1090/qam/860899
Reference: [24] J. E. Dendy: Galerkin’s method for some highly nonlinear problems.SIAM J. Num. Anal. 14 (1977), 327–347. Zbl 0365.65065, MR 0433914, 10.1137/0714021
Reference: [25] Guo Zhong-Heng: The unified theory of variational principles in nonlinear elasticity.Arch. Mech. 32 (1980), 577–596. MR 0619303
Reference: [26] H. Hattori: Breakdown of smooth solutions in dissipative nonlinear hyperbolic equations.Q. Appl. Math. 40 (1982), 113–127. Zbl 0505.76008, MR 0666668, 10.1090/qam/666668
Reference: [27] D. Hoff, J. Smoller: Solutions in the large for certain nonlinear parabolic systems.Anal. Non Lin. 2 (1985), 213–235. MR 0797271
Reference: [28] W. J. Hrusa: A nonlinear functional differential equation in Banach space with applications to materials with fading memory.Arch. Ration. Mech. Anal. 84 (1983), 99–137. Zbl 0544.73056, MR 0713121, 10.1007/BF00252129
Reference: [29] R. C. MacCamy: Nonlinear Volterra equations on a Hilbert space.J. Diff. Eqns 16 (1974), 373–393. Zbl 0263.45010, MR 0377605, 10.1016/0022-0396(74)90021-7
Reference: [30] R. C. MacCamy: Stability theorems for a class of functional differential equations.SIAM J. Appl. Math. 30 (1976), 557–576. Zbl 0346.34059, MR 0404818, 10.1137/0130050
Reference: [31] R. C. MacCamy: A model for non-dimensional, nonlinear viscoelasticity.Q. Appl. Math. 35 (1977), 21–33. MR 0478939, 10.1090/qam/478939
Reference: [32] B. Neta: Finite element approximation of a nonlinear parabolic problem.Comput. Math Appl. 4 (1987), 247–255. MR 0518696
Reference: [33] B. Neta: Numerical solution of a nonlinear integro-differential equation.J. Math. Anal. Appl. 89 (1982), 598–611. Zbl 0488.65074, MR 0677747, 10.1016/0022-247X(82)90119-6
Reference: [34] R. W. Ogden: Principal stress and strain trajectories in nonlinear elastostatics.Q. Appl. Math. 44 (1986), 255–264. Zbl 0608.73022, MR 0856179, 10.1090/qam/856179
Reference: [35] R. L. Pego: Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability.Arch. Ration. Mech. Anal. 97 (1987), 353–394. Zbl 0656.73023, MR 0865845, 10.1007/BF00280411
Reference: [36] M. Slemrod: Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional, nonlinear thermoelasticity.Arch. Ration. Mech. Anal. 76 (1981), 97–133. Zbl 0481.73009, MR 0629700, 10.1007/BF00251248
Reference: [37] O. J. Staffans: On a nonlinear hyperbolic Volterra equation.SIAM J. Math. Anal. 11 (1980), 793–812. Zbl 0464.45010, MR 0586908, 10.1137/0511071
Reference: [38] J. Schauder: Der Fixpunktsatz in Funktionalräumen.Studia Math. 2 (1930), 171–180. 10.4064/sm-2-1-171-180
Reference: [39] I. Privalov: On a boundary problem in the theory of analytic functions.Math. Sb. 41 (1934), 519–526.
Reference: [40] S. Banach: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales.Fundam. Math. 3 (1922), 133–181. 10.4064/fm-3-1-133-181
Reference: [41] V. Cacciopoli: Un teorema generale sull’asistenza di elementi uniti in una transformazione functionale.Rend. Accad. Lincei 2 (1930).
Reference: [42] M. I. Zhykovskiy: Calculation of the Flow in Lattices of Profiles of Turbomachines.Mashgiz, Moscow, 1960. (Russian)
Reference: [43] N. I. Muskhelishvili: Some Basic Problems of the Mathematical Theory of Elasticity.Noordhoff, Groningen, Netherlands, 1953. Zbl 0052.41402, MR 0058417
Reference: [44] N. I. Muskhelishvili: Singular Integral Equations.Noordhoff, Groningen, Netherlands, 1972. MR 0355494
Reference: [45] V. V. Ivanov: The Theory of Approximate Methods and their Application to the Numerical Solution of Singular Integral Equations.Noordhoff, Leyden, Netherlands, 1976. Zbl 0346.65065, MR 0405045
.

Files

Files Size Format View
AplMat_42-1997-5_2.pdf 398.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo