Previous |  Up |  Next

Article

Title: Homogenization of parabolic equations an alternative approach and some corrector-type results (English)
Author: Holmbom, Anders
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 5
Year: 1997
Pages: 321-343
Summary lang: English
.
Category: math
.
Summary: We extend and complete some quite recent results by Nguetseng [Ngu1] and Allaire [All3] concerning two-scale convergence. In particular, a compactness result for a certain class of parameterdependent functions is proved and applied to perform an alternative homogenization procedure for linear parabolic equations with coefficients oscillating in both their space and time variables. For different speeds of oscillation in the time variable, this results in three cases. Further, we prove some corrector-type results and benefit from some interpolation properties of Sobolev spaces to identify regularity assumptions strong enough for such results to hold. (English)
Keyword: partial differential equations
Keyword: homogenization
Keyword: two-scale convergence
Keyword: linear parabolic equations
Keyword: oscillating coefficients in space and time variable
Keyword: dissimilar speeds of oscillation
Keyword: admissible test functions
Keyword: corrector results
Keyword: compactness result
Keyword: interpolation
Keyword: coefficients oscillating in space and time
MSC: 35B27
MSC: 35K20
MSC: 35K99
MSC: 73B27
MSC: 73K20
MSC: 74E05
MSC: 74E30
idZBL: Zbl 0898.35008
idMR: MR1467553
DOI: 10.1023/A:1023049608047
.
Date available: 2009-09-22T17:55:27Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134362
.
Reference: [Ada] R. A. Adams: Sobolev Spaces. Academic Press, New York.1975. MR 0450957
Reference: [All1] G. Allaire: Two-scale convergence and homogenization of periodic structures.School on homogenization, ICTP, Trieste, September 6–17, 1993.
Reference: [All2] G. Allaire: Homogenization of the unsteady Stokes equation in porous media.Progress in pdes: calculus of variation, applications, Pitman Research notes in mathematics Series 267, C. Bandle et al. (eds.), Longman Higher Education, New York, 1992. MR 1194192
Reference: [All3] G. Allaire: Homogenization and two-scale convergence.SIAM Journal of Mathematical Analysis, 23 (1992), no. 6, 1482–1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [Alt] H. W. Alt: Lineare Funktionalanalysis.Springer-Verlag, 1985. Zbl 0577.46001
Reference: [Att] H. Attouch: Variational Convergence of Functions and Operators.Pitman Publishing Limited, 1984. MR 0773850
Reference: [Bens] A. Bensoussan, J. L. Lions, G. Papanicolau: Asymptotic Analysis for Periodic Structures.Studies in Mathematics and its Applications, North-Holland, 1978. MR 0503330
Reference: [BeLö] J. Bergh, J. Löfström: Interpolation Spaces. An Introduction.Grundlehren der mathematischen Wissenschaft, Springer-Verlag, 1976. MR 0482275
Reference: [BraOts] S. Brahim-Otsmane, G. Francfort, F. Murat: Correctors for the homogenization of the wave and heat equation.J. Math. Pures Appl 9 (1992). MR 1172450
Reference: [CoFo] P. Constantin, C. Foiaş: Navier-Stokes equations.The University of Chicago Press, Chicago, 1989. MR 0972259
Reference: [DM] G. Dal Maso: An introduction to $\Gamma $-convergence. Progress in Nonlinear Differential Equations and their Applications, Volume 8, Birkhäuser Boston.1993. MR 1201152
Reference: [Defr] A. Defranceschi: An introduction to homogenization and G-convergence.School on homogenization, ICTP, Trieste, September 6–17, 1993.
Reference: [Edw] R. E. Edwards: Functional Analysis.Holt, Rinehart and Winston, New York, 1965. Zbl 0182.16101, MR 0221256
Reference: [HolWel] A. Holmbom, N. Wellander: Some results for periodic and non-periodic two-scale convergence.Working paper No. 33 University of Gävle/Sandviken, 1996.
Reference: [Kuf] A. Kufner: Function Spaces.Nordhoff International, Leyden, 1977. Zbl 0364.46022, MR 0541734
Reference: [LiMa] J. L. Lions, E. Magenes: Non Homogeneous Boundary Value problems and Applications II.Springer-Verlag, Berlin, 1972.
Reference: [Nand] A. K. Nandakumaran: Steady and evolution Stokes equations in a porous media with Non-homogeneous boundary data. A homogenization process.Differential and Integral Equations 5 (1992), no. 1, 73–93. MR 1141728
Reference: [Ngu1] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization.SIAM Journal of Mathematical Analysis 20 (1989), no. 3, 608–623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [Ngu2] G. Nguetseng: Thèse d’Etat.Université Paris 6, 1984.
Reference: [Per] L. E. Persson, L. Persson, J. Wyller, N. Svanstedt: The Homogenization Method—An Introduction.Studentlitteratur Publishing, 1993. MR 1250833
Reference: [SaPa] E. Sanchez-Palencia: Non-Homogeneous Media and Vibration Theory.Springer Verlag, 1980. Zbl 0432.70002
Reference: [Tem] R. Temam: Navier Stokes Equation.North-Holland, 1984. MR 0769654
Reference: [Zei] E. Zeidler: Nonlinear Functional Analysis and its Applications II.Springer Verlag, 1990. Zbl 0684.47029, MR 0816732
Reference: [Ziem] W. Ziemer: Weakly Differentiable Functions.Springer Verlag, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
AplMat_42-1997-5_1.pdf 419.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo