Previous |  Up |  Next

Article

Title: On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $ (English)
Author: Elabbasy, E. M.
Author: El-Metwally, H.
Author: Elsayed, E. M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 2
Year: 2008
Pages: 133-147
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence \[ x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}},\,\,\,n=0,1,\dots \,\ \] where the parameters $ a_{i}$ and $b_{i}$ for $i=0,1,\dots ,k$ are positive real numbers and the initial conditions $x_{-k},x_{-k+1},\dots ,x_{0}$ are arbitrary positive numbers. (English)
Keyword: stability
Keyword: periodic solution
Keyword: difference equation
MSC: 39A10
MSC: 39A11
MSC: 39A20
MSC: 39A22
MSC: 39A23
MSC: 39A30
idZBL: Zbl 1199.39028
idMR: MR2428309
DOI: 10.21136/MB.2008.134057
.
Date available: 2009-09-24T22:35:25Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134057
.
Reference: [1] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed: On the periodic nature of some max-type difference equation.Int. J. Math. Math. Sci. 14 (2005), 2227–2239. MR 2177819
Reference: [2] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed: On the difference equation $x_{n+1}=\frac{\alpha x_{n-k}}{\Bigl (\beta +\gamma \prod _{i=0}^{k}x_{n-i}\Bigr )}$.J. Conc. Appl. Math. 5 (2007), 101–113. MR 2292704
Reference: [3] H. El-Metwally, E. A. Grove, G. Ladas, H. D. Voulov: On the global attractivity and the periodic character of some difference equations.J. Difference Equ. Appl. 7 (2001), 837–850. MR 1870725, 10.1080/10236190108808306
Reference: [4] H. El-Metwally, E. A. Grove, G. Ladas, L. C. McGrath: On the difference equation $y_{n+1}= \frac{(y_{n-(2k+1)}+p)}{(y_{n-(2k+1)}+qy_{n-2l})}$.Proceedings of the 6th ICDE, Taylor and Francis, London, 2004. MR 2092580
Reference: [5] G. Karakostas: Asymptotic 2-periodic difference equations with diagonally self-invertible responses.J. Difference Equ. Appl. 6 (2000), 329–335. Zbl 0963.39020, MR 1785059, 10.1080/10236190008808232
Reference: [6] G. Karakostas: Convergence of a difference equation via the full limiting sequences method.Diff. Equ. Dyn. Sys. 1 (1993), 289–294. Zbl 0868.39002, MR 1259169
Reference: [7] V. L. Kocic, G. Ladas: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications.Kluwer Academic Publishers, Dordrecht, 1993. MR 1247956
Reference: [8] W. A. Kosmala, M. R. S. Kulenovic, G. Ladas, C. T. Teixeira: On the recursive sequence $y_{n+1}= \frac{p+y_{n-1}}{qy_{n}+y_{n-1}}$.J. Math. Anal. Appl. 251 (2001), 571–586. MR 1794759
Reference: [9] M. R. S. Kulenovic, G. Ladas, N. R. Prokup: A rational difference equation.Comput. Math. Appl. 41 (2001), 671–678. MR 1822594, 10.1016/S0898-1221(00)00311-4
Reference: [10] M. R. S. Kulenovic, G. Ladas, N. R. Prokup: On the recursive sequence $x_{n+1}=(\alpha x_{n}+\beta x_{n-1})/{(A+x_{n})}$.J. Difference Equ. Appl. 6 (2000), 563–576. MR 1802447
Reference: [11] M. R. S. Kulenovic, G. Ladas, W. S. Sizer: On the recursive sequence $x_{n+1}=(\alpha x_{n}+\beta x_{n-1})/{(\gamma x_{n}+\delta x_{n-1})}$.Math. Sci. Res. Hot-Line 2 (1998), 1–16. MR 1623643
Reference: [12] Wan-Tong Li, Hong-Rui Sun: Dynamics of a rational difference equation.Appl. Math. Comp. 163 (2005), 577–591. MR 2121812, 10.1016/j.amc.2004.04.002
.

Files

Files Size Format View
MathBohem_133-2008-2_3.pdf 273.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo