Title:
|
Order convergence of vector measures on topological spaces (English) |
Author:
|
Khurana, Surjit Singh |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
133 |
Issue:
|
1 |
Year:
|
2008 |
Pages:
|
19-27 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a completely regular Hausdorff space, $E$ a boundedly complete vector lattice, $C_{b}(X)$ the space of all, bounded, real-valued continuous functions on $X$, $\mathcal{F}$ the algebra generated by the zero-sets of $X$, and $\mu \: C_{b}(X) \rightarrow E$ a positive linear map. First we give a new proof that $\mu $ extends to a unique, finitely additive measure $ \mu \: \mathcal{F} \rightarrow E^{+}$ such that $\nu $ is inner regular by zero-sets and outer regular by cozero sets. Then some order-convergence theorems about nets of $E^{+}$-valued finitely additive measures on $\mathcal{F}$ are proved, which extend some known results. Also, under certain conditions, the well-known Alexandrov’s theorem about the convergent sequences of $\sigma $-additive measures is extended to the case of order convergence. (English) |
Keyword:
|
order convergence |
Keyword:
|
tight and $\tau $-smooth lattice-valued vector measures |
Keyword:
|
measure representation of positive linear operators |
Keyword:
|
Alexandrov’s theorem |
MSC:
|
28A33 |
MSC:
|
28B05 |
MSC:
|
28B15 |
MSC:
|
28C05 |
MSC:
|
28C15 |
MSC:
|
46B42 |
MSC:
|
46G10 |
MSC:
|
47B65 |
idZBL:
|
Zbl 1199.28008 |
idMR:
|
MR2400148 |
DOI:
|
10.21136/MB.2008.133944 |
. |
Date available:
|
2009-09-24T22:34:00Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133944 |
. |
Reference:
|
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Academic Press, 1985. MR 0809372 |
Reference:
|
[2] Diestel, J., Uhl, J. J.: Vector Measures.Amer. Math. Soc. Surveys 15, Amer. Math. Soc., 1977. MR 0453964 |
Reference:
|
[3] Kawabe, Jun: The Portmanteau theorem for Dedekind complete Riesz space-valued measures.Nonlinear Analysis and Convex Analysis, Yokohama Publ., Yokohama, 2004, pp. 149–158. Zbl 1076.28004, MR 2144038 |
Reference:
|
[4] Kawabe, Jun: Uniformity for weak order convergence of Riesz space-valued measures.Bull. Austral. Math. Soc. 71 (2005), 265–274. MR 2133410, 10.1017/S0004972700038235 |
Reference:
|
[5] Khurana, Surjit Singh: Lattice-valued Borel measures.Rocky Mt. J. Math. 6 (1976), 377–382. MR 0399409, 10.1216/RMJ-1976-6-2-377 |
Reference:
|
[6] Khurana, Surjit Singh: Lattice-valued Borel measures II.Trans. Amer. Math. Soc. 235 (1978), 205–211. Zbl 0325.28012, MR 0460590, 10.1090/S0002-9947-1978-0460590-2 |
Reference:
|
[7] Khurana, Surjit Singh: Topologies on spaces of continuous vector-valued functions.Trans Amer. Math. Soc. 241 (1978), 195–211. MR 0492297, 10.1090/S0002-9947-1978-0492297-X |
Reference:
|
[8] Khurana, Surjit Singh: A vector form of Alexanderov’s theorem.Math. Nachr. 135 (1988), 73–77. MR 0944218, 10.1002/mana.19881350107 |
Reference:
|
[9] Lipecki, Z.: Riesz representation theorems for positive operators.Math. Nachr. 131 (1987), 351–356. MR 0908823, 10.1002/mana.19871310130 |
Reference:
|
[10] Schaeffer, H. H.: Topological Vector Spaces.Springer, 1980. |
Reference:
|
[11] Schaeffer, H. H.: Banach Lattices and Positive Operators.Springer, 1974. |
Reference:
|
[12] Wheeler, R. F.: Survey of Baire measures and strict topologies.Expo. Math. 2 (1983), 97–190. Zbl 0522.28009, MR 0710569 |
Reference:
|
[13] Varadarajan, V. S.: Measures on topological spaces.Amer. Math. Soc. Transl. 48 (1965), 161–220. 10.1090/trans2/048/10 |
Reference:
|
[14] Wright, J. D. M.: Stone-algebra-valued measures and integrals.Proc. Lond. Math. Soc. 19 (1969), 107–122. Zbl 0186.46504, MR 0240276, 10.1112/plms/s3-19.1.107 |
Reference:
|
[15] Wright, J. D. M.: Vector lattice measures on locally compact spaces.Math. Z. 120 (1971), 193–203. Zbl 0198.47803, MR 0293373, 10.1007/BF01117493 |
Reference:
|
[16] Wright, J. D. M.: The measure extension problem for vector lattices.Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. Zbl 0215.48101, MR 0330411, 10.5802/aif.393 |
Reference:
|
[17] Wright, J. D. M.: Measures with values in partially ordered vector spaces.Proc. Lond. Math. Soc. 25 (1972), 675–688. MR 0344413, 10.1112/plms/s3-25.4.675 |
Reference:
|
[18] Wright, J. D. M.: An algebraic characterization of vector lattices with Borel regularity property.J. Lond. Math. Soc. 7 (1973), 277–285. MR 0333116, 10.1112/jlms/s2-7.2.277 |
. |