Title:
|
Support properties of a family of connected compact sets (English) |
Author:
|
Nedoma, Josef |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
126 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
67-79 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A problem of finding a system of proportionally located parallel supporting hyperplanes of a family of connected compact sets is analyzed. A special attention is paid to finding a common supporting halfspace. An existence theorem is proved and a method of solution is proposed. (English) |
Keyword:
|
set family |
Keyword:
|
supporting hyperplane |
Keyword:
|
lexicographic optimization |
Keyword:
|
polyhedral approximation. |
MSC:
|
15A03 |
MSC:
|
15A39 |
MSC:
|
52B55 |
MSC:
|
52C35 |
MSC:
|
90C34 |
idZBL:
|
Zbl 0982.15003 |
idMR:
|
MR1826472 |
DOI:
|
10.21136/MB.2001.133924 |
. |
Date available:
|
2009-09-24T21:47:28Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133924 |
. |
Reference:
|
[1] G. B. Dantzig: Linear programming and extensions.Princeton University Press, Princeton, 1973. MR 1658673 |
Reference:
|
[2] H. W. Kuhn, A. W. Tucker: Linear inequalities and related systems.Princeton University Press, Princeton, 1956. |
Reference:
|
[3] J. E. Falk: Exact solutions of inexact linear programs.Oper. Res. 24 (1976), 783–787. Zbl 0335.90035, MR 0437008, 10.1287/opre.24.4.783 |
Reference:
|
[4] L. Grygarová: A calculation of all separating hyperplanes of two convex polytopes.Optimization 41 (1997), 57–69. MR 1460220, 10.1080/02331939708844325 |
Reference:
|
[5] L. Grygarová: On a calculation of an arbitrary separating hyperplane of convex polyhedral sets.Optimization 43 (1997), 93–112. MR 1638843 |
Reference:
|
[6] L. Grygarová: Separating support syperplanes for a pair of convex polyhedral sets.Optimization 43 (1997), 113–143. MR 1638847 |
Reference:
|
[7] L. Grygarová: On a supporting hyperplane for two convex polyhedral sets.Optimization 43 (1997), 235–255. MR 1774340 |
Reference:
|
[8] V. Klee: Separation and support properties of convex sets—A survey. In: A. V. Balakrishnan (ed.): Control Theory and the Calculus of Variations.Academic Press, New York, 1969. MR 0394357 |
Reference:
|
[9] D. G. Luenberger: Introduction to linear and nonlinear programming.Addison-Wesley Publishing Comp., 1973. Zbl 0297.90044 |
Reference:
|
[10] R. Hettich, P. Zehncke: Numerische Methoden der Approximation und semi-infiniten Optimierung.Teubner, Stuttgart, 1982. MR 0653476 |
Reference:
|
[11] R. Hettich, K. O. Kortanek: Semi-infinite programming, theory, methods and applications.SIAM Review 35, 380–429. MR 1234637 |
Reference:
|
[12] J. Nedoma: Linear independence and total separation of set families.Ekonomicko-matematický obzor 14 (1978). Zbl 0422.15015, MR 0508972 |
Reference:
|
[13] J. Nedoma: Vague matrices in linear programming.Ann. Oper. Res. 47 (1993), 483–496. Zbl 0793.90033, MR 1260033, 10.1007/BF02023110 |
Reference:
|
[14] J. Nedoma: Inaccurate linear equation systems with a restricted-rank error matrix.Linear and Multilinear Algebra 44 (1998), 29–44. MR 1638938, 10.1080/03081089808818545 |
Reference:
|
[15] J. Nedoma: Positively regular vague matrices.(to appear). Zbl 1002.15020, MR 1815951 |
Reference:
|
[16] W. Oettli: On the solution set of a linear system with inaccurate coefficients.SIAM J. Numer. Anal. 2 (1965), 115–118. Zbl 0146.13404, MR 0178567 |
Reference:
|
[17] W. Oettli, W. Prager: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides.Numer. Math. 6 (1964), 405–409. MR 0168106, 10.1007/BF01386090 |
Reference:
|
[18] J. Ramík: Linear programming with inexact coefficients.Res. Report, Japan Adv. Inst. Sci. Techn., Hokuriku, 1997. |
Reference:
|
[19] R. T. Rockafellar: Convex analysis.Princeton University Press, Princeton, 1970. Zbl 0193.18401, MR 0274683 |
Reference:
|
[20] J. Rohn: Systems of linear interval equations.Linear Algebra Appl. 126 (1989), 39–78. Zbl 0712.65029, MR 1040771 |
Reference:
|
[21] J. Stoer, C. Witzgall: Convexity and optimization in finite dimensions I.Springer, Berlin, 1970. MR 0286498 |
Reference:
|
[22] J. Tichatschke, R. Hettich, G. Still: Connections between generalized, inexact and semi-infinite linear programming.ZOR-Methods Models Oper. Res. 33 (1989), 367–382. MR 1030790 |
Reference:
|
[23] D. J. Thuente: Duality theory for generalized linear programs with computational methods.Operations Research 28 (1980), 1005–1011. Zbl 0441.90056, MR 0584904, 10.1287/opre.28.4.1005 |
. |