Previous |  Up |  Next

Article

Title: Support properties of a family of connected compact sets (English)
Author: Nedoma, Josef
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 1
Year: 2001
Pages: 67-79
Summary lang: English
.
Category: math
.
Summary: A problem of finding a system of proportionally located parallel supporting hyperplanes of a family of connected compact sets is analyzed. A special attention is paid to finding a common supporting halfspace. An existence theorem is proved and a method of solution is proposed. (English)
Keyword: set family
Keyword: supporting hyperplane
Keyword: lexicographic optimization
Keyword: polyhedral approximation.
MSC: 15A03
MSC: 15A39
MSC: 52B55
MSC: 52C35
MSC: 90C34
idZBL: Zbl 0982.15003
idMR: MR1826472
DOI: 10.21136/MB.2001.133924
.
Date available: 2009-09-24T21:47:28Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133924
.
Reference: [1] G. B. Dantzig: Linear programming and extensions.Princeton University Press, Princeton, 1973. MR 1658673
Reference: [2] H. W. Kuhn, A. W. Tucker: Linear inequalities and related systems.Princeton University Press, Princeton, 1956.
Reference: [3] J. E. Falk: Exact solutions of inexact linear programs.Oper. Res. 24 (1976), 783–787. Zbl 0335.90035, MR 0437008, 10.1287/opre.24.4.783
Reference: [4] L. Grygarová: A calculation of all separating hyperplanes of two convex polytopes.Optimization 41 (1997), 57–69. MR 1460220, 10.1080/02331939708844325
Reference: [5] L. Grygarová: On a calculation of an arbitrary separating hyperplane of convex polyhedral sets.Optimization 43 (1997), 93–112. MR 1638843
Reference: [6] L. Grygarová: Separating support syperplanes for a pair of convex polyhedral sets.Optimization 43 (1997), 113–143. MR 1638847
Reference: [7] L. Grygarová: On a supporting hyperplane for two convex polyhedral sets.Optimization 43 (1997), 235–255. MR 1774340
Reference: [8] V. Klee: Separation and support properties of convex sets—A survey. In: A. V. Balakrishnan (ed.): Control Theory and the Calculus of Variations.Academic Press, New York, 1969. MR 0394357
Reference: [9] D. G. Luenberger: Introduction to linear and nonlinear programming.Addison-Wesley Publishing Comp., 1973. Zbl 0297.90044
Reference: [10] R. Hettich, P. Zehncke: Numerische Methoden der Approximation und semi-infiniten Optimierung.Teubner, Stuttgart, 1982. MR 0653476
Reference: [11] R. Hettich, K. O. Kortanek: Semi-infinite programming, theory, methods and applications.SIAM Review 35, 380–429. MR 1234637
Reference: [12] J. Nedoma: Linear independence and total separation of set families.Ekonomicko-matematický obzor 14 (1978). Zbl 0422.15015, MR 0508972
Reference: [13] J. Nedoma: Vague matrices in linear programming.Ann. Oper. Res. 47 (1993), 483–496. Zbl 0793.90033, MR 1260033, 10.1007/BF02023110
Reference: [14] J. Nedoma: Inaccurate linear equation systems with a restricted-rank error matrix.Linear and Multilinear Algebra 44 (1998), 29–44. MR 1638938, 10.1080/03081089808818545
Reference: [15] J. Nedoma: Positively regular vague matrices.(to appear). Zbl 1002.15020, MR 1815951
Reference: [16] W. Oettli: On the solution set of a linear system with inaccurate coefficients.SIAM J. Numer. Anal. 2 (1965), 115–118. Zbl 0146.13404, MR 0178567
Reference: [17] W. Oettli, W. Prager: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides.Numer. Math. 6 (1964), 405–409. MR 0168106, 10.1007/BF01386090
Reference: [18] J. Ramík: Linear programming with inexact coefficients.Res. Report, Japan Adv. Inst. Sci. Techn., Hokuriku, 1997.
Reference: [19] R. T. Rockafellar: Convex analysis.Princeton University Press, Princeton, 1970. Zbl 0193.18401, MR 0274683
Reference: [20] J. Rohn: Systems of linear interval equations.Linear Algebra Appl. 126 (1989), 39–78. Zbl 0712.65029, MR 1040771
Reference: [21] J. Stoer, C. Witzgall: Convexity and optimization in finite dimensions I.Springer, Berlin, 1970. MR 0286498
Reference: [22] J. Tichatschke, R. Hettich, G. Still: Connections between generalized, inexact and semi-infinite linear programming.ZOR-Methods Models Oper. Res. 33 (1989), 367–382. MR 1030790
Reference: [23] D. J. Thuente: Duality theory for generalized linear programs with computational methods.Operations Research 28 (1980), 1005–1011. Zbl 0441.90056, MR 0584904, 10.1287/opre.28.4.1005
.

Files

Files Size Format View
MathBohem_126-2001-1_6.pdf 357.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo