Previous |  Up |  Next

Article

Title: Approximation methods for solving the Cauchy problem (English)
Author: Mortici, Cristinel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 709-718
Summary lang: English
.
Category: math
.
Summary: In this paper we give some new results concerning solvability of the 1-dimensional differential equation $y^{\prime } = f(x,y)$ with initial conditions. We study the basic theorem due to Picard. First we prove that the existence and uniqueness result remains true if $f$ is a Lipschitz function with respect to the first argument. In the second part we give a contractive method for the proof of Picard theorem. These considerations allow us to develop two new methods for finding an approximation sequence for the solution. Finally, some applications are given. (English)
Keyword: Cauchy problem
Keyword: Lipschitz function
Keyword: Picard theorem
Keyword: succesive approximations method
Keyword: contractions principle
MSC: 34A12
MSC: 34A34
MSC: 34A45
MSC: 47H10
MSC: 47N20
idZBL: Zbl 1081.34009
idMR: MR2153095
.
Date available: 2009-09-24T11:26:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128015
.
Reference: [1] V. Barbu: Ecuatii Diferentiale.Ed. Junimea, Iasi, 1985.
Reference: [2] H.  Brézis: Analyse Fonctionnelle. Théorie et applications.Masson, Paris, 1983. MR 0697382
Reference: [3] A.  Halanay: Ecuatii Diferentiale.Ed. Did. si Ped., Bucuresti, 1972. Zbl 0258.34001, MR 0355142
Reference: [4] Gh.  Morosanu: Ecuatii Diferentiale. Aplicatii.Ed. Academiei, Bucuresti, 1989. MR 1031994
Reference: [5] L.  Pontriaguine: Equations Différentielles Ordinaires.Mir, Moscow, 1969. Zbl 0185.15701, MR 0261056
Reference: [6] S.  Sburlan, L.  Barbu and C.  Mortici: Ecuatii Diferentiale, Integrale si Sisteme Dinamice.Ex Ponto, Constanta, 1999. MR 1734289
.

Files

Files Size Format View
CzechMathJ_55-2005-3_13.pdf 310.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo