Previous |  Up |  Next

Article

Title: On dense subspaces satisfying stronger separation axioms (English)
Author: Alas, Ofelia T.
Author: Tkachenko, Mikhail G.
Author: Tkachuk, Vladimir V.
Author: Wilson, Richard G.
Author: Yaschenko, Ivan V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 15-28
Summary lang: English
.
Category: math
.
Summary: We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than $c$ has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight $c$ which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of $\pi$-weight less than $\mathfrak p$ has a dense completely Hausdorff (and hence Urysohn) subspace. We show that there exists a Tychonoff space without dense normal subspaces and give other examples of spaces without “good” dense subsets. (English)
Keyword: Hausdorff space
Keyword: Urysohn space
Keyword: completely Hausdorff space
Keyword: filter of dense sets
MSC: 22A05
MSC: 54C10
MSC: 54C25
MSC: 54D06
MSC: 54D15
MSC: 54D25
MSC: 54H11
idZBL: Zbl 1079.54518
idMR: MR1814628
.
Date available: 2009-09-24T10:39:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127622
.
Reference: [A] A. V. Arhangel’skii: Structure and classification of topological spaces and cardinal invariants.Uspekhi Mat. Nauk 33 (1978), 29–84. (Russian) MR 0526012
Reference: [A1] A. V. Arhangel’skii: Continuous mappings, factorization theorems, and function spaces.Trudy Moskov. Mat. Obshch. 47 (1984), 3–21. (Russian) MR 0774944
Reference: [ATTW] O. T. Alas, M. G. Tkačenko, V. V. Tkachuk and R. G. Wilson: Connectifying some spaces.Topology Appl. 71 (1996), 203–215. MR 1397942, 10.1016/0166-8641(95)00012-7
Reference: [B] R. H. Bing: A countable connected Hausdorff space.Proc. Amer. Math. Soc. 4 (1953), 474. MR 0060806, 10.1090/S0002-9939-1953-0060806-9
Reference: [vD] E. van Douwen: The integers and topology.Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North Holland P.C., 1984, pp. 111–167. Zbl 0561.54004, MR 0776622
Reference: [E] R. Engelking: General Topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [M1] V. I. Malykhin: A Fréchet-Urysohn compact space without points of countable character.Mat. Zametky 41 (1987), 365–376. (Russian) MR 0893365
Reference: [M2] V. I. Malykhin: On dense subspaces of topological spaces.General Topology—Mappings of Topological Spaces; Proceedings of the Moscow Seminar on General Topology, Moscow Univ. P.H., Moscow, 1986, pp. 65–76. (Russian) MR 1080759
Reference: [Na] I. Namioka: Separate continuity and joint continuity.Pacific J. Math. 51 (1974), 515–531. Zbl 0294.54010, MR 0370466, 10.2140/pjm.1974.51.515
Reference: [No] N. Noble: The continuity of functions on Cartesian products.Trans. Amer. Math. Soc. 149 (1970), 187–198. Zbl 0229.54028, MR 0257987, 10.1090/S0002-9947-1970-0257987-5
Reference: [RE] E. A. Reznichenko: A pseudocompact space in which only the subsets of complete power can be non-closed.Vestnik Mosk. Univ., Ser. Matem., Mech. 6 (1989), 69–70. MR 1065983
Reference: [RO] P. Roy: A countable connected Urysohn space with a dispersion point.Duke Math. J. 33 (1966), 331–333. Zbl 0147.22804, MR 0196701, 10.1215/S0012-7094-66-03337-0
Reference: [T] M. G. Tkačenko: On a property of compact spaces.Proceedings of the Moscow Seminar on General Topology, Moscow University P. H., Moscow, 1981, pp. .
.

Files

Files Size Format View
CzechMathJ_51-2001-1_2.pdf 405.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo