Title:
|
On dense subspaces satisfying stronger separation axioms (English) |
Author:
|
Alas, Ofelia T. |
Author:
|
Tkachenko, Mikhail G. |
Author:
|
Tkachuk, Vladimir V. |
Author:
|
Wilson, Richard G. |
Author:
|
Yaschenko, Ivan V. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
15-28 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than $c$ has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight $c$ which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of $\pi$-weight less than $\mathfrak p$ has a dense completely Hausdorff (and hence Urysohn) subspace. We show that there exists a Tychonoff space without dense normal subspaces and give other examples of spaces without “good” dense subsets. (English) |
Keyword:
|
Hausdorff space |
Keyword:
|
Urysohn space |
Keyword:
|
completely Hausdorff space |
Keyword:
|
filter of dense sets |
MSC:
|
22A05 |
MSC:
|
54C10 |
MSC:
|
54C25 |
MSC:
|
54D06 |
MSC:
|
54D15 |
MSC:
|
54D25 |
MSC:
|
54H11 |
idZBL:
|
Zbl 1079.54518 |
idMR:
|
MR1814628 |
. |
Date available:
|
2009-09-24T10:39:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127622 |
. |
Reference:
|
[A] A. V. Arhangel’skii: Structure and classification of topological spaces and cardinal invariants.Uspekhi Mat. Nauk 33 (1978), 29–84. (Russian) MR 0526012 |
Reference:
|
[A1] A. V. Arhangel’skii: Continuous mappings, factorization theorems, and function spaces.Trudy Moskov. Mat. Obshch. 47 (1984), 3–21. (Russian) MR 0774944 |
Reference:
|
[ATTW] O. T. Alas, M. G. Tkačenko, V. V. Tkachuk and R. G. Wilson: Connectifying some spaces.Topology Appl. 71 (1996), 203–215. MR 1397942, 10.1016/0166-8641(95)00012-7 |
Reference:
|
[B] R. H. Bing: A countable connected Hausdorff space.Proc. Amer. Math. Soc. 4 (1953), 474. MR 0060806, 10.1090/S0002-9939-1953-0060806-9 |
Reference:
|
[vD] E. van Douwen: The integers and topology.Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North Holland P.C., 1984, pp. 111–167. Zbl 0561.54004, MR 0776622 |
Reference:
|
[E] R. Engelking: General Topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780 |
Reference:
|
[M1] V. I. Malykhin: A Fréchet-Urysohn compact space without points of countable character.Mat. Zametky 41 (1987), 365–376. (Russian) MR 0893365 |
Reference:
|
[M2] V. I. Malykhin: On dense subspaces of topological spaces.General Topology—Mappings of Topological Spaces; Proceedings of the Moscow Seminar on General Topology, Moscow Univ. P.H., Moscow, 1986, pp. 65–76. (Russian) MR 1080759 |
Reference:
|
[Na] I. Namioka: Separate continuity and joint continuity.Pacific J. Math. 51 (1974), 515–531. Zbl 0294.54010, MR 0370466, 10.2140/pjm.1974.51.515 |
Reference:
|
[No] N. Noble: The continuity of functions on Cartesian products.Trans. Amer. Math. Soc. 149 (1970), 187–198. Zbl 0229.54028, MR 0257987, 10.1090/S0002-9947-1970-0257987-5 |
Reference:
|
[RE] E. A. Reznichenko: A pseudocompact space in which only the subsets of complete power can be non-closed.Vestnik Mosk. Univ., Ser. Matem., Mech. 6 (1989), 69–70. MR 1065983 |
Reference:
|
[RO] P. Roy: A countable connected Urysohn space with a dispersion point.Duke Math. J. 33 (1966), 331–333. Zbl 0147.22804, MR 0196701, 10.1215/S0012-7094-66-03337-0 |
Reference:
|
[T] M. G. Tkačenko: On a property of compact spaces.Proceedings of the Moscow Seminar on General Topology, Moscow University P. H., Moscow, 1981, pp. . |
. |