Title:
|
A note on condensations of $C_p(X)$ onto compacta (English) |
Author:
|
Arhangel'skii, A. V. |
Author:
|
Pavlov, O. I. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
485-492 |
. |
Category:
|
math |
. |
Summary:
|
A condensation is a one-to-one continuous mapping onto. It is shown that the space $C_p(X)$ of real-valued continuous functions on $X$ in the topology of pointwise convergence very often cannot be condensed onto a compact Hausdorff space. In particular, this is so for any non-metrizable Eberlein compactum $X$ (Theorem 19). However, there exists a non-metrizable compactum $X$ such that $C_p(X)$ condenses onto a metrizable compactum (Theorem 10). Several curious open problems are formulated. (English) |
Keyword:
|
condensation |
Keyword:
|
compactum |
Keyword:
|
network |
Keyword:
|
Lindelöf space |
Keyword:
|
topology of pointwise convergence |
Keyword:
|
$\sigma $-compact space |
Keyword:
|
Eberlein compactum |
Keyword:
|
Corson compactum |
Keyword:
|
Borel set |
Keyword:
|
monolithic space |
Keyword:
|
tightness |
MSC:
|
54A25 |
MSC:
|
54A35 |
MSC:
|
54C35 |
MSC:
|
54D30 |
idZBL:
|
Zbl 1090.54003 |
idMR:
|
MR1920523 |
. |
Date available:
|
2009-01-08T19:24:06Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119337 |
. |
Reference:
|
[1] Arhangelskii A.V.: Continuous maps, factorization theorems, and function spaces.Trans. Moscow Math. Soc. 47 (1985), 1-22. |
Reference:
|
[2] Arhangelskii A.V.: Topological Function Spaces.Kluwer Academic Publishers, Dordrecht, 1992, p. 205. MR 1144519 |
Reference:
|
[3] Arhangelskii A.V.: $C_p$-theory.pp.1-56 in: M. Hu\u sek and J. van Mill, Eds, Recent Progress in General Topology, North-Holland, Amsterdam-London-New-York, 1992, 796 pp. |
Reference:
|
[4] Arhangelskii A.V.: On condensations of $C_p$-spaces onto compacta.Proc. Amer. Math. Soc. 128 (2000), 1881-1883. MR 1751998 |
Reference:
|
[5] Arhangelskii A.V., Ponomarev V.I.: Fundamentals of General Topology in Problems and Exercises.D. Reidel Publ. Co., Dordrecht-Boston, Mass., 1984. MR 0785749 |
Reference:
|
[6] Banach S.: Livre Ecossais.Problem 1, 17:8, 1935; Colloq. Math. 1 (1947), p.150. |
Reference:
|
[7] Dobrowolski T., Marciszewski W.: Classification of function spaces with the topology determined by a countable dense set.Fund. Math. 148 (1995), 35-62. MR 1354937 |
Reference:
|
[8] Godefroy G.: Compacts de Rosenthal.Pacific J. Math. 91 (1980), 293-306. Zbl 0475.46003, MR 0615679 |
Reference:
|
[9] Juhasz I.: Cardinal functions in topology.Math. Centre Tracts 34, Amsterdam, 1971. Zbl 0479.54001, MR 0340021 |
Reference:
|
[10] Marciszewski W.: A function space $C_p(X)$ without a condensation onto a $\sigma $-compact space.submitted, 2001. Zbl 1019.54012 |
Reference:
|
[11] Marciszewski W.: On a classification of pointwise compact sets of the first Baire class functions.Fund. Math. 133 (1989), 195-209. Zbl 0719.54022, MR 1065902 |
Reference:
|
[12] Pytkeev E.G.: Upper bounds of topologies.Math. Notes 20:4 (1976), 831-837. MR 0428237 |
Reference:
|
[13] Tkachenko M.G.: Bicompacta that are continuous images of sets everywhere dense in the product of spaces.Bull. Acad. Polon. Sci. Ser. Sci. Math. 27:10 (1979), 797-802. MR 0603151 |
Reference:
|
[14] Tkachenko M.G.: On continuous images of spaces of functions.Siberian Math. J. 26:5 (1985), 159-167. MR 0808711 |
Reference:
|
[15] Tkachenko M.G.: Factorization theorems for topological groups and their applications.Topology Appl. 38 (1991), 21-37. Zbl 0722.54039, MR 1093863 |
Reference:
|
[16] Tkachenko M.G.: On continuous images of dense subspaces of topological products.Uspekhi Mat. Nauk 34:6 (1979), 199-202. MR 0562841 |
. |