Title:
|
Disasters in metric topology without choice (English) |
Author:
|
Tachtsis, Eleftherios |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
165-174 |
. |
Category:
|
math |
. |
Summary:
|
We show that it is consistent with ZF that there is a dense-in-itself compact metric space $(X,d)$ which has the countable chain condition (ccc), but $X$ is neither separable nor second countable. It is also shown that $X$ has an open dense subspace which is not paracompact and that in ZF the Principle of Dependent Choice, DC, does not imply {\it the disjoint union of metrizable spaces is normal\/}. (English) |
Keyword:
|
Axiom of Choice |
Keyword:
|
Axiom of Multiple Choice |
Keyword:
|
Principle of Dependent Choice |
Keyword:
|
Ordering Principle |
Keyword:
|
metric spaces |
Keyword:
|
separable metric spaces |
Keyword:
|
second countable metric spaces |
Keyword:
|
paracompact spaces |
Keyword:
|
compact T$_2$ spaces |
Keyword:
|
ccc spaces. |
MSC:
|
03E25 |
MSC:
|
54A35 |
MSC:
|
54D20 |
MSC:
|
54E35 |
MSC:
|
54E45 |
MSC:
|
54F05 |
idZBL:
|
Zbl 1072.03030 |
idMR:
|
MR1903316 |
. |
Date available:
|
2009-01-08T19:20:40Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119309 |
. |
Reference:
|
[1] Cohen P.J.: Set Theory and the Continuum Hypothesis.Benjamin, 1966. Zbl 0182.01401, MR 0232676 |
Reference:
|
[2] van Douwen E.K.: Horrors of topology without AC: a non normal orderable space.Proc. Amer. Math. Soc. 95 (1985), 101-105. MR 0796455 |
Reference:
|
[3] Good C., Tree I.J.: Continuing horrors of topology without choice.Topology Appl. 63 (1995), 79-90. Zbl 0822.54001, MR 1328621 |
Reference:
|
[4] Good C., Tree I.J., Watson W.S.: On Stone's theorem and the axiom of choice.Proc. Amer. Math. Soc. 126 (1998), 1211-1218. Zbl 0893.54016, MR 1425122 |
Reference:
|
[5] Herrlich H., Steprāns J.: Maximal filters, continuity and choice principles.Quaestiones Math. 20 (1997), 697-705. MR 1625478 |
Reference:
|
[6] Herrlich H., Strecker G.E.: When is $\Bbb N$ Lindelöf?.Comment. Math. Univ. Carolinae 38.3 (1997), 553-556. Zbl 0938.54008, MR 1485075 |
Reference:
|
[7] Howard P., Keremedis K., Rubin H., Rubin J.E.: Disjoint unions of topological spaces and choice.Math. Logic Quart. 44 (1998), 493-508. Zbl 0922.03069, MR 1654348 |
Reference:
|
[8] Howard P., Keremedis K., Rubin J.E., Stanley A.: Paracompactness of metric spaces and the axiom of multiple choice.Math. Logic Quart. 46 (2000). Zbl 0993.03059, MR 1755811 |
Reference:
|
[9] Howard P., Keremedis K., Rubin J.E., Stanley A., Tachtsis E.: Non-constructive properties of the real numbers.Math. Logic Quart. 47 (2001), 423-431. MR 1847458 |
Reference:
|
[10] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.Math. Surveys and Monographs 59, Amer. Math. Soc., Providence R.I., 1998. Zbl 0947.03001, MR 1637107 |
Reference:
|
[11] Jech T.: The Axiom of Choice.North-Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271 |
Reference:
|
[12] Keremedis K.: Disasters in topology without the axiom of choice.Arch. Math. Logic, to appear. Zbl 1027.03040, MR 1867681 |
Reference:
|
[13] Keremedis K.: Countable disjoint unions in topology and some weak forms of the axiom of choice.Arch. Math. Logic, submitted. |
Reference:
|
[14] Keremedis K., Tachtsis E.: Compact metric spaces and weak forms of the axiom of choice.Math. Logic Quart. 47 (2001), 117-128. Zbl 0968.03057, MR 1808950 |
Reference:
|
[15] Keremedis K., Tachtsis E.: On Lindelöf metric spaces and weak forms of the axiom of choice.Math. Logic Quart. 46 (2000), 35-44. Zbl 0952.03060, MR 1736648 |
Reference:
|
[16] Kunen K.: Set Theory, An Introduction to Independence Proofs.North-Holland, Amsterdam, 1983. Zbl 0534.03026, MR 0756630 |
Reference:
|
[17] Willard S.: General Topology.Addison-Wesley Publ. Co., Reading, MA, 1968. Zbl 1052.54001, MR 2048350 |
. |