Previous |  Up |  Next

Article

Title: Integrability for vector-valued minimizers of some variational integrals (English)
Author: Leonetti, Francesco
Author: Siepe, Francesco
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 469-479
.
Category: math
.
Summary: We prove that the higher integrability of the data $f, f_0$ improves on the integrability of minimizers $u$ of functionals $\Cal F$, whose model is $$ \int_{\Omega} \left[|Du|^p + (\operatorname{det} (Du))^2 - \langle f,Du \rangle + \langle f_0,u \rangle \right] dx, $$ where $u:\Omega\subset \Bbb R^n\to \Bbb R^n$ and $p\ge 2$. (English)
Keyword: calculus of variations
Keyword: minimizers
Keyword: regularity
MSC: 35J20
MSC: 35J60
MSC: 49J20
MSC: 49J53
MSC: 49N60
idZBL: Zbl 1051.49023
idMR: MR1860235
.
Date available: 2009-01-08T19:11:46Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119261
.
Reference: [1] Boccardo L., Giachetti D.: Alcune osservazioni sulla regolarità delle soluzioni di problemi fortemente non lineari e applicazioni.Ricerche Mat. XXXIV (1985), 309-323. MR 0870828
Reference: [2] Boccardo L., Schianchi R.: A remark on the $L^s$-regularity of the minima of functionals of the calculus of variations.Rev. Mat. Univ. Complut. Madrid 2 (1989), 113-118. MR 1012107
Reference: [3] Campanato S.: Sistemi ellittici in forma di divergenza.Quaderni Scuola Norm. Sup. Pisa, 1980. MR 0668196
Reference: [4] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. Un. Mat. Ital. 4 (1968), 135-137. MR 0227827
Reference: [5] D'Ottavio A., Leonetti F., Musciano C.: Maximum principle for vector-valued mappings minimizing variational integrals.Atti Sem. Mat. Fis. Univ. Modena, suppl. vol. XLVI (1998), 677-683. Zbl 0913.35026, MR 1645746
Reference: [6] Fusco N., Hutchinson J.: Partial regularity and everywhere continuity for a model problem from non-linear elasticity.J. Austral. Math. Soc. (Series A) 57 (1994), 158-169. MR 1288671
Reference: [7] Giachetti D., Porzio M.M.: Local regularity results for minima of functionals of the calculus of variations.Nonlinear Anal. TMA 39 (2000), 463-482. MR 1725398
Reference: [8] Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems.Ann. of Math. Stud. 105, Princeton Univ. Press, 1983. Zbl 0516.49003, MR 0717034
Reference: [9] Giusti E.: Metodi diretti nel calcolo delle variazioni.U.M.I., 1994. Zbl 0942.49002, MR 1707291
Reference: [10] Kufner A., John O., Fučik S.: Function Spaces.Noordhoff International Publishing, Leyden, 1977. MR 0482102
Reference: [11] Leonetti F.: Maximum principle for vector-valued minimizers of some integral functionals.Boll. Un. Mat. Ital. 7 (1991), 51-56. Zbl 0729.49015, MR 1101010
Reference: [12] Leonetti F.: Maximum principle for functionals depending on minors of the jacobian matrix of vector-valued mappings.Australian Nat. Univ., Centre for Math. Anal., Research Report 20, 1990.
Reference: [13] Nečas J., Stará J.: Principio di massimo per i sistemi ellittici quasi lineari non diagonali.Boll. Un. Mat. Ital. 6 (1972), 1-10. MR 0315281
Reference: [14] Stampacchia G.: Equations elliptiques du second ordre à coefficientes discontinus.Semin. de Math. Supérieures, Univ. de Montréal 16 (1966). MR 0251373
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_5.pdf 217.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo