Previous |  Up |  Next

Article

Title: On the Jacobson radical of graded rings (English)
Author: Kelarev, A. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 1
Year: 1992
Pages: 21-24
.
Category: math
.
Summary: All commutative semigroups $S$ are described such that the Jacobson radical is homogeneous in each ring graded by $S$. (English)
Keyword: Jacobson radical
Keyword: $G$-graded ring ($G$ a commutative semigroup)
MSC: 16A20
MSC: 16A21
MSC: 16N20
MSC: 16N40
MSC: 16W50
MSC: 20C05
MSC: 20M14
idZBL: Zbl 0815.16025
idMR: MR1173741
.
Date available: 2009-01-08T17:49:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118465
.
Reference: [1] Bergman G.M.: On Jacobson radicals of graded rings.preprint.
Reference: [2] Clifford A.H., Preston G.B.: The Algebraic Theory of Semigroups.Vol. 1., Math. Surveys of the Amer. Math. Soc. 7 (1961). Zbl 0238.20076, MR 0132791
Reference: [3] Cohen M., Montgomery S.: Group graded rings, smash products and group actions.Trans. Amer. Math. Soc. 282 (1984), 237-258. Addendum: Trans. Amer. Math. Soc. 300 (1987), 810-811. Zbl 0533.16001, MR 0728711
Reference: [4] Cohen M., Rowen L.H.: Group graded rings.Commun. Algebra 11 (1983), 1253-1270. Zbl 0522.16001, MR 0696990
Reference: [5] Jespers E.: On radicals of graded rings.Commun. Algebra 13 (1985), 2457-2472. Zbl 0575.16001, MR 0807485
Reference: [6] Jespers E.: When is the Jacobson radical of a semigroup ring of a commutative semigroup homogeneous?.Commun. Algebra 109 (1987), 549-560. Zbl 0619.20045, MR 0902968
Reference: [7] Jespers E., Krempa J., Puczylowski E.R.: On radicals of graded rings.Commun. Algebra 10 (1982), 1849-1854. Zbl 0493.16003, MR 0674695
Reference: [8] Jespers E., Puczylowski E.R.: The Jacobson and Brown-McCoy radicals of rings graded by free groups.Commun. Algebra 19 (1991), 551-558. Zbl 0721.16023, MR 1100363
Reference: [9] Jespers E., Wauters P.: A description of the Jacobson radical of semigroups rings of commutative semigroup.Group and Semigroup Rings, Johannesburg, 1986, 43-89. MR 0860052
Reference: [10] Kelarev A.V.: When is the radical of a band sum of rings homogeneous?.Commun. Algebra 18 (1990), 585-603. Zbl 0697.20049, MR 1047329
Reference: [11] Munn W.D.: On commutative semigroup algebras.Math. Proc. Camb. Phil. Soc. 93 (1983), 237-246. Zbl 0528.20053, MR 0691992
Reference: [12] Okninski J.: On the radical of semigroup algebras satisfying polynomial identities.Math. Proc. Camb. Phil. Soc. 99 (1986), 45-50. Zbl 0583.20052, MR 0809496
Reference: [13] Okninski J., Wauters P.: Radicals of semigroup rings of commutative semigroups.Math. Proc. Camb. Phil. Soc. 99 (1986), 435-445. Zbl 0599.20104, MR 0830356
Reference: [14] Puczylowski E.R.: Behaviour of radical properties of rings under some algebraic constructions.Coll. Math. Soc. János Bolyai 38 (1982), 449-480. MR 0899123
Reference: [15] Teply M.L., Turman E.G., Quesada A.: On semisimple semigroup rings.Proc. Amer. Math. Soc. 79 (1980), 157-163. Zbl 0445.20043, MR 0565329
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-1_2.pdf 168.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo