Previous |  Up |  Next

Article

Title: Sigma order continuity and best approximation in $L_\varrho$-spaces (English)
Author: Kilmer, Shelby J.
Author: Kozƚowski, Wojciech M.
Author: Lewicki, Grzegorz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 2
Year: 1991
Pages: 241-250
.
Category: math
.
Summary: In this paper we give a characterization of $\sigma $-order continuity of modular function spaces $L_\varrho$ in terms of the existence of best approximants by elements of order closed sublattices of $L_\varrho\,$. We consider separately the case of Musielak--Orlicz spaces generated by non-$\sigma $-finite measures. Such spaces are not modular function spaces and the proofs require somewhat different methods. (English)
Keyword: best approximation
Keyword: lattices
Keyword: modular function spaces
Keyword: $L_\varrho $-spaces
Keyword: Orlicz spaces
MSC: 41A50
MSC: 41A65
MSC: 46E30
idZBL: Zbl 0754.41017
idMR: MR1137785
.
Date available: 2008-10-09T13:12:10Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116962
.
Reference: [1] Ando T., Amemiya I.: Almost everywhere convergence of prediction sequences in $L_p(1< p<\infty)$.Z. Wahrscheinlichkeitstheorie verw. Gebiete 4 (1965), 113-120. MR 0189077
Reference: [2] Birnbaum Z., Orlicz W.: Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen.Studia Math. 3 (1931), 1-67. Zbl 0003.25202
Reference: [3] Kilmer S., Kozlowski W.M., Lewicki G.: Best approximants in modular function spaces.Journ. Approx. Th. 63 (1990), 338-367. Zbl 0718.41049, MR 1081035
Reference: [4] Kozlowski W.M.: Modular Function Spaces.Series of Monographs and Textbooks in Pure and Applied Mathematics, 122, Dekker, New York, Basel, 1988. Zbl 0718.41049, MR 1474499
Reference: [5] Kozlowski W.M.: Notes on modular function spaces I.Comment. Math. 28 (1988), 87-100. Zbl 0747.46023, MR 0988963
Reference: [6] Kozlowski W.M.: Notes on modular function spaces II.Comment. Math. 28 (1988), 101-116. Zbl 0747.46022, MR 1474499
Reference: [7] Krasnosel'skii M.A., Rutickii Y.B.: Convex functions and Orlicz spaces.Noordhoff, Groningen, 1961. MR 0126722
Reference: [8] Landers D., Rogge L.: Best approximants in $L_\varphi $-spaces.Z. Wahrscheinlichkeitstheorie verw. Gebiete 51 (1980), 215-237. MR 0566317
Reference: [9] Lindenstrauss J., Tzafriri J.: Classical Banach Spaces II: Function Spaces.Springer-Verlag, Berlin, Heidelberg, New York, 1979. Zbl 0403.46022, MR 0540367
Reference: [10] Luxemburg W., Zaanen A.: Notes on Banach function spaces I-XIII.Proc. Royal Acad. Sci., Amsterdam (1963) A-66, 135-153, 239-263, 496-504, 655-681; (1964) A-64, 101-119; (1964) A-67, 360-376, 493-543. MR 0173167
Reference: [11] Musielak J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. Zbl 0557.46020, MR 0724434
Reference: [12] Orlicz W.: Über eine gewisse Klasse von Räumen vom Typus B.Bull. Acad. Polon. Sci. Ser A (1932), 207-220. Zbl 0006.31503
Reference: [13] Orlicz W.: Über Räumen $L^M$.Bull. Acad. Polon. Sci. Ser A (1936), 93-107.
Reference: [14] Shintani T., Ando T.: Best approximants in $L_1$ space.Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 33-39. Zbl 0298.41016, MR 0380963
Reference: [15] Turett B.: Fenchel-Orlicz spaces.Dissertationes Math. 181 (1980), 1-60. Zbl 0435.46025, MR 0578390
Reference: [16] Zaanen A.C.: Integration.North Holland, Amsterdam, London, 1967. Zbl 0671.42001, MR 0222234
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-2_6.pdf 232.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo