Previous |  Up |  Next

Article

Title: $m$-medial $n$-quasigroups (English)
Author: Kepka, Tomáš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 1
Year: 1991
Pages: 9-14
.
Category: math
.
Summary: For $n\geq 4$, every $n$-medial $n$-quasigroup is medial. If $1\leq m<n$, then there exist $m$-medial $n$-quasigroups which are not $(m+1)$-medial. (English)
Keyword: $n$-quasigroup
Keyword: medial
MSC: 20N05
MSC: 20N15
idZBL: Zbl 0736.20044
idMR: MR1118284
.
Date available: 2008-10-09T13:10:40Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116937
.
Reference: [1] Bénéteau L.: Free commutative Moufang loops and anticommutative graded rings.J. Algebra 67 (1980), 1-35. MR 0595016
Reference: [2] Bénéteau L.: Une classe particulière de matroïdes parfaits.Annals of Discr. Math. 8 (1980), 229-232. MR 0597178
Reference: [3] Bénéteau L., Kepka t., Lacaze J.: Small finite trimedial quasigroups.Commun. Algebra 14 (1986), 1067-1090. MR 0837271
Reference: [4] Bol G.: Gewebe und Gruppen.Math. Ann. 114 (1937), 414-431. Zbl 0016.22603, MR 1513147
Reference: [5] Deza M., Hamada N.: The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme.Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980.
Reference: [6] Evans T.: Abstract mean values.Duke Math. J. 30 (1963), 331-347. Zbl 0118.26304, MR 0155781
Reference: [7] Kepka T.: Structure of triabelian quasigroups.Comment. Math. Univ. Carolinae 17 (1976), 229-240. Zbl 0338.20097, MR 0407182
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-1_2.pdf 185.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo