Previous |  Up |  Next

Article

Title: Infinite algebras with 3-transitive groups of weak automorphisms (English)
Author: Szabó, László
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 4
Year: 2001
Pages: 245-256
Summary lang: English
.
Category: math
.
Summary: The infinite algebras with 3-transitive groups of weak automorphisms are investigated. Among others it is shown that if an infinite algebra with 3-transitive group of weak automorphisms has a nontrivial idempotent polynomial operation then either it is locally functionally complete or it is polynomially equivalent to a vector space over the two element field or it is a simple algebra that is semi-affine with respect to an elementary 2-group. In the second and third cases the group of weak automorphisms cannot be 4-transitive. (English)
Keyword: locally functionally complete algebra
Keyword: weak automorphism
MSC: 08A05
MSC: 08A35
MSC: 08A40
idZBL: Zbl 1069.08001
idMR: MR1879447
.
Date available: 2008-06-06T22:29:00Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107802
.
Reference: [1] Csákány, B.: Homogeneous algebras are functionally complete.Algebra Universalis 11 (1980), 149–158. MR 0588208
Reference: [2] Fried, E., Szabó, L. and Szendrei, Á.: Algebras with $p$-uniform principal congruences.Studia Sci. Math. Hungar. 16 (1981), 229–235. MR 0703660
Reference: [3] Goetz, A.: On weak isomorphisms and weak homomorphisms of abstract algebras.Colloq. Math. 14 (1966), 163–167. Zbl 0192.09504, MR 0184889
Reference: [4] Kaiser, H. K. and Márki, L.: Remarks on a paper of L. Szabó and Szendrei, Á..Acta Sci. Math. (Szeged) 42 (1980), 95–98. MR 0576941
Reference: [5] E. Marczewski, E.: Independence in abstract algebras.Colloq. Math. 14 (1966), 169–188. MR 0184890
Reference: [6] Pálfy, P. P., Szabó, L. and Szendrei, Á.: Algebras with doubly transitive automorphism groups.in: Finite Algebra and Multiple-Valued Logic (Proc. Conf. Szeged, 1979), Colloq. Math. Soc. J. Bolyai, vol. 28, North-Holland, Amsterdam, 1981; 521–535. MR 0648631
Reference: [7] Pálfy, P. P., Szabó, L. and Szendrei, Á.: Automorphism groups and functional completeness.Algebra Universalis 15 (1982), 385–400. MR 0689771
Reference: [8] Rosenberg, I. G., and Szabó, L.: Local completeness I.Algebra Universalis 18 (1984), 308–326. MR 0745495
Reference: [9] Salomaa, A.: A theorem concerning the composition of functions of several variables ranging over a finite set.J. Symbolic Logic 25 (1960), 203–208. MR 0144815
Reference: [10] Szabó, L. and Szendrei, Á.: Almost all algebras with triply transitive automorphism groups are functionally complete.Acta Sci. Math. (Szeged) 41 (1979), 391–402. MR 0555434
Reference: [11] Szabó, L.: Interpolation in algebras with doubly primitive automorphism groups.Elektron. Informationsverarbeit. Kybernetik 19 (1983), 603–610. MR 0746848
Reference: [12] Szabó, L.: Basic permutation groups on infinite sets.Acta Sci. Math. (Szeged) 47 (1984), 61–70. MR 0755563
Reference: [13] Szabó, L.: Triply transitive algebras.Acta Sci. Math. (Szeged) 51 (1987), 221–227. MR 0911573
Reference: [14] Szabó, L.: Algebras with transitive automorphism groups.Algebra Universalis 31 (1994), 589–598. MR 1274075
Reference: [15] Szabó, L.: On simple surjective algebras.Acta Sci. Math. (Szeged) 59 (1994), 17–23. MR 1285425
Reference: [16] Szabó, L.: Simple, surjective, transitive algebras.in: General Algebra and Ordered Sets (Proc. of the Summer School, 1994), Dept. of Algebra and Geometry, Palacký University Olomouc, Olomouc, Czech Republic; 138-143. MR 1342550
Reference: [17] Szabó, L.: Characteristically simple algebras.Acta Sci. Math. (Szeged) 63 (1997), 51–70. MR 1459779
Reference: [18] Szabó, L.: Algebras that are simple with weak automorphisms.Algebra Universalis 42 (1999), 205–233. MR 1736715
Reference: [19] Wielandt, H.: Finite permutation group.Academic Press, New York and London, 1964. MR 0183775
.

Files

Files Size Format View
ArchMathRetro_037-2001-4_1.pdf 364.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo