Previous |  Up |  Next

Article

Title: Surjectivity theorems for multi-valued mappings of accretive type (English)
Author: Morales, Claudio H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 26
Issue: 2
Year: 1985
Pages: 397-413
.
Category: math
.
MSC: 47H06
MSC: 47H10
MSC: 47H15
idZBL: Zbl 0595.47041
idMR: MR803937
.
Date available: 2008-06-05T21:21:47Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106380
.
Reference: [1] N. A. Assad W. A. Kirk: Fixed point theorems for set-valued mappings of contractive type.Pacific J. of Math. 43 (1972), 553-562. MR 0341459
Reference: [2] F. E. Browder: Normal solarability and $\phi $-accretive mappings of Banach spaces.Bull. Amer. Math. Soc, 78 (1972), 186-192. MR 0306992
Reference: [3] F. E. Browder: Nonlinear mappings of nonexpansive and accretive type in Banach space.Bull. Amer. Math. Soc. 73 (1967), 875-881. MR 0232255
Reference: [4] F. E. Brovder: Nonlinear operators and nonlinear equations of evolution in Banach spaces.Proc. Symp. Pure Math. vol. 18, pt. 2, Amer. Math. Soc, Providence, RI, 1976. MR 0405188
Reference: [5] M. Crandall A. Pazy: On the range of accretive operators.Israel J. Math. 27 (1977), 235-246. MR 0442763
Reference: [6] K. Deimling: Zeros of accretive operators.Manuscripts Math, 13 (1974), 365-375. Zbl 0288.47047, MR 0350538
Reference: [7] A. G. Kartsatos: Some mapping for accretive operators in Banach spaces.J. Math. Anal. Appl. 82 (1981), 169-183. MR 0626747
Reference: [8] T. Kato: Nonlinear semigroups and evolution equations.J. Math. Soc. Japan 19 (1967), 508-520. Zbl 0163.38303, MR 0226230
Reference: [9] W. A. Kirk: Local expansions and accretive mappings.accepted. Zbl 0534.47032
Reference: [10] W. A. Kirk R. Schöneberg: Some results on pseudo-contractive mappings.Pacific J. Math. 71 (1977), 89-100. MR 0487615
Reference: [11] W. A. Kirk R. Schöneberg: Zeros of $m$-accretive operators in Banach spaces.Israel J. Math. 35 (1980), 1-8. MR 0576458
Reference: [12] R. H. Martin: Differential equations on closed subsets of a Banach space.Trans. Amer. Math. Soc. 179 (1973), 399-414. Zbl 0293.34092, MR 0318991
Reference: [13] C. Morales: Nonlinear equations involving $m$-accretive operators.J. Math. Anal. Appl. 97 (1983), 329-336. Zbl 0542.47042, MR 0723235
Reference: [14] C. Morales: Zeros for strongly accretive set-valued mappings.submitted. Zbl 0634.47048
Reference: [15] William O. Ray, Anita M. Walker: Mapping theorems for Gateaux differentiable and accretive operators.Nonlinear Analysis, 6 (1982), 423-433. MR 0661709
Reference: [16] R. Schöneberg: On the domain invariance theorem for accretive mappings.J. London Math. Soc. 24 (1981), 548-554. MR 0635886
.

Files

Files Size Format View
CommentatMathUnivCarol_026-1985-2_21.pdf 962.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo