Previous |  Up |  Next

Article

Title: Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints (English)
Author: Bock, Igor
Author: Lovíšek, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 4
Year: 1987
Pages: 301-314
Summary lang: English
Summary lang: Russian
Summary lang: Slovak
.
Category: math
.
Summary: We deal with an optimal control problem for variational inequalities, where the monotone operators as well as the convex sets of possible states depend on the control parameter. The existence theorem for the optimal control will be applied to the optimal design problems for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control variable. (English)
Keyword: optimal control
Keyword: variational inequalities
Keyword: optimal design
Keyword: elasto-plastic beam
Keyword: elastic plate
Keyword: obstacle
Keyword: convex set
Keyword: thickness-function
MSC: 49A27
MSC: 49A29
MSC: 49A34
MSC: 49J27
MSC: 49J40
MSC: 49J99
MSC: 73k40
MSC: 74K10
MSC: 74K20
MSC: 74S30
idZBL: Zbl 0638.49003
idMR: MR0897834
DOI: 10.21136/AM.1987.104261
.
Date available: 2008-05-20T18:32:46Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104261
.
Reference: [1] I. Bock J. Lovíšek: An optimal control problem for an elliptic variational inequality.Math Slovaca 33, 1983, No. 1, 23-28. MR 0689273
Reference: [2] M. Chipot: Variational inequalities and flow in porous media.Springer Verlag 1984. Zbl 0544.76095, MR 0747637
Reference: [3] I. Hlaváček I. Bock J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis. I. Optimal design of a beam with unilateral supports.Appl. Math. Optimization 11, 1984, 111-143. MR 0743922, 10.1007/BF01442173
Reference: [4] I. Hlaváček I. Bock J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis. II. Local optimization of the stress in a beam. III. Optimal design of an elastic plate.Appl. Math. Optimization 13, 1985, 117-136. MR 0794174, 10.1007/BF01442202
Reference: [5] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press 1980. MR 0567696
Reference: [6] A. Langenbach: Monotone Potentialoperatoren in Theorie und Anwendung.VEB Deutsche Verlag der Wissenschaften, Berlin 1976. Zbl 0387.47037, MR 0495530
Reference: [7] J. L. Lions: Quelques méthodes de résolution děs problèmes aux limites non linéaires.Dunod, Paris 1969. Zbl 0189.40603, MR 0259693
Reference: [8] U. Mosco: Convergence of convex sets and of solutions of variational inequalities.Advances of Math. 3, 1969,510-585. Zbl 0192.49101, MR 0298508
Reference: [9] F. Murat: L'injection du cone positif de $H^{-1}$ dans $W^{-1,2}$ est compact pour tout q < 2.J. Math. Pures Appl. 60, 1981, 309-321. MR 0633007
.

Files

Files Size Format View
AplMat_32-1987-4_5.pdf 1.391Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo