Previous |  Up |  Next

Article

Title: Convergence of multistep methods for systems of ordinary differential equations with parameters (English)
Author: Jankowski, Tadeusz
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 4
Year: 1987
Pages: 257-270
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The author considers the convergence of quasilinear nonstationary multistep methods for systems of ordinary differential with parameters. Sufficient conditions for their convergence are given. The new numerical method is tested for two examples and it turns out to be a little better than the Hamming method. (English)
Keyword: quasilinear nonstationary multistep methods
Keyword: convergence
Keyword: Hamming method
MSC: 34B15
MSC: 65L10
idZBL: Zbl 0634.65063
idMR: MR0897830
DOI: 10.21136/AM.1987.104257
.
Date available: 2008-05-20T18:32:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104257
.
Reference: [1] I. Babuška M. Práger E. Vitásek: Numerical processes in differential equations.Praha 1966. MR 0223101
Reference: [2] R. Conti: Problèmes iinéaires pour les équations différentielles ordinaires.Mathematische Nachrichten 23 (1961), 161-178. MR 0138818, 10.1002/mana.1961.3210230304
Reference: [3] A. Gasparini A. Mangini: Sul calcolo numerico delle soluzioni di un noto problema ai limiti per l'equazione $y'=\lambda f(x,y)$.Le Matematiche 22 (1965), 101-121. MR 0191098
Reference: [4] R. W. Hamming: Stable predictor-corrector methods for ordinary differential equations.Journal of the Association for Computing Machinery, t. 6 nr. 1 (1959), 37-47. Zbl 0086.11201, MR 0102179, 10.1145/320954.320958
Reference: [5] Z. Jackiewicz M. Kwapisz: On the convergence of multistep methods for the Cauchy problem for ordinary differential equations.Computing 20 (1978), 351 - 361. MR 0619909, 10.1007/BF02252383
Reference: [6] K. Jankowska T. Jankowski: On a boundary-value problem of a differential equation with a deviated argument.(Polish), Zeszyty Naukowe Politechniki Gdańskiej, Matematyka 7 (1973), 33-48.
Reference: [7] T. Jankowski: On the convergence of multistep methods for ordinary differential equations with discontinuities.Demonstratio Mathematica 16 (1983), 651 - 675. Zbl 0571.65065, MR 0733727, 10.1515/dema-1983-0309
Reference: [8] T. Jankowski M. Kwapisz: On the existence and uniqueness of solutions of boundary-value problem for differential equations with parameter.Mathematische Nachrichten 71 (1976), 237-247. MR 0405190, 10.1002/mana.19760710119
Reference: [9] H. Jeffreys B. S. Jeffreys: Methods of mathematical physics.Cambridge UP 1956. MR 0074466
Reference: [10] A. V. Kibenko A. I. Perov: A two-point boundary value problem with parameter.(Russian), Azerbaidžan. Gos. Univ. Učen. Zap. Ser. Fiz.-Mat. i Him. Nauk 3 (1961), 21-30. MR 0222376
Reference: [11] J. D. Lambert: Computational methods in ordinary differential equations.New York 1973. Zbl 0258.65069, MR 0423815
Reference: [12] D. I. Martiniuk: Lectures on qualitative theory of difference equations.(Russian). Kiev: Naukova Dumka 1972. MR 0611163
Reference: [13] R. Pasquali: Un procedimento di calcolo connesso ad un noto problema ai limiti per l'equazione $x'= f(t, x, \lambda)$.Le Matematiche 23 (1968), 319-328. Zbl 0182.22003, MR 0267785
Reference: [14] Z. B. Seidov: A multipoint boundary value problem with a parameter for systems of differential equations in Banach space.Sibirskij Matematiczeskij Žurnał 9 (1968), 223-228. MR 0281987
Reference: [15] D. Squier: Non-linear difference schemes.Journal of Approximation Theory 1 (1968), 236-242. Zbl 0219.39003, MR 0234637, 10.1016/0021-9045(68)90027-0
Reference: [16] J. Stoer R. Bulirsch: Einführung in die Numerische Mathematik I:.Springer Verlag Berlin Heidelberg 1972. MR 0400617
Reference: [17] S. Takahashi: Die Differentialgleichung $y'= k f(x,y)$.Tôhoku Math. J. 34 (1941), 249-256.
.

Files

Files Size Format View
AplMat_32-1987-4_1.pdf 1.765Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo