Previous |  Up |  Next

Article

Title: Some rank tests of independence and the question of their power-function (English)
Author: Krišťák, Milan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 16
Issue: 6
Year: 1971
Pages: 412-420
Summary lang: Czech
Summary lang: Slovak
.
Category: math
.
Summary: The paper deals with the problem of testing independence of a pair of random variables $X=W+\Delta ,\ Y=W^*+\Delta Z$ by locally most powerful rank tests in a neighborhood of the point $\Delta =0$. The corresponding tests for double-exponentially and for normally distributed random variables $W$ and $W^*$ are introduced. The power-functions of the $U$-test in a neighborhood of the points $\Delta =\rho =0$ for both cases are given numerically. ()
MSC: 62G10
MSC: 62G30
idZBL: Zbl 0246.62060
idMR: MR0293796
DOI: 10.21136/AM.1971.103376
.
Date available: 2008-05-20T17:52:01Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103376
.
Reference: [1] Elandt, Regina: Exact and Approximate Power of the Non-parametric Test of Tendecy.Ann. Math. Stat. 33, 471-481, 1962. MR 0137239, 10.1214/aoms/1177704574
Reference: [2] J. Hájek Z. Šidák: Theory of Rank Tests.Academia Praha 1967. MR 0229351
Reference: [3] I. P. Natanson: Teorija funkcij veščestvennoj peremenoj.Moskva 1957.
Reference: [4] : Tables of the Binomial Probability Distribution.Nat. Bur. of Stand. Appl. Math. Ser. 6, 1950.
.

Files

Files Size Format View
AplMat_16-1971-6_4.pdf 1.312Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo