Previous |  Up |  Next

Article

Title: Archimedean classes in an ordered semigroup. I (English)
Author: Saitô, Tôru
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 26
Issue: 2
Year: 1976
Pages: 218-238
Summary lang: Russian
.
Category: math
.
MSC: 06A50
idZBL: Zbl 0338.06005
idMR: MR0406897
DOI: 10.21136/CMJ.1976.101393
.
Date available: 2008-06-09T14:17:54Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101393
.
Reference: [1] G. Birkhoff: Lattice theory.3rd edition. Amer. Math. Soc, Providence, R. I., 1967. Zbl 0153.02501, MR 0227053
Reference: [2] A. H. Clifford, G. B. Preston: The algebraic theory of semigroups. Vol. I.Amer. Math. Soc., Providence, R. I., 1961. Zbl 0111.03403, MR 0132791
Reference: [3] B. Pondělíček: Archimedean equivalence on ordered semigroups.Czechoslovak Math. J. 22 (97) (1972), 210-219. MR 0294200
Reference: [4] T. Saitô: Ordered idempotent semigroups.J. Math. Soc. Japan 14 (1962), 150-169. MR 0144993, 10.2969/jmsj/01420150
Reference: [5] T. Saitô: Regular elements in an ordered semigroup.Pacific J. Math. 13 (1963), 263 - 295. MR 0152598, 10.2140/pjm.1963.13.263
Reference: [6] T. Saitô: Note on the archimedean property in an ordered semigroup.Proc. Japan Acad. 46 (1970), 64-65. MR 0262135
Reference: [7] T. Saitô: Note on the archimedean property in an ordered semigroup.Bull. Tokyo Gakugei Univ. Ser. IV, 22 (1970), 8-12. MR 0268102
Reference: [8] T. Saitô: Elements of finite order in an ordered semigroup whose product is of infinite order.Proc. Japan Acad. 50 (1974), 268-270. MR 0360401
Reference: [9] T. Saitô: Archimedean classes in a nonnegatively ordered semigroup.to appear. MR 0682004
.

Files

Files Size Format View
CzechMathJ_26-1976-2_8.pdf 1.998Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo